Skip to main content

Embedded Structural Modes: Unifying Scale Degrees and Harmonic Functions

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11502))

Included in the following conference series:

  • 1182 Accesses

Abstract

The paper offers an integration of the theory of structural modes, functional theory and diatonic scale degrees. In analogy to the parsimonious voice leading between generic diatonic triads we study parsimonious function leading between embedded structural modes. A combinatorics of diatonic embeddings of structural modes is given. In four analytical examples we study the interaction of relative minor and major modes within an encompassing diatonic collection. Finally we discuss alternative possibilities for the interpretation of the diminished fifth as a fundament progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The first and second modes are refinements of the authentic division of the octave into fifth and fourth, while the third mode is not. Algebraically, this corresponds to the fact that \(a \mapsto ba, b \mapsto b\) and \(a \mapsto ab, b \mapsto b\) are both automorphisms of the free group \(F_2\), while \(a \mapsto bb, b \mapsto a\) is not. This is in strict analogy to the fact, that the sixth-fourth chord is the bad conjugate among the three triadic modes. The root position triad and the sixth chord are refinements of the division of the octave in third and sixth, while the sixth-fourth chord is not. Algebraically, \(a \mapsto a, b \mapsto ab\) and \(a \mapsto a, ba \mapsto b\) are both automorphisms, while \(a \mapsto b, b \mapsto aa\) is not.

  2. 2.

    Of course we also adapt the chord tones in the other voices. But our concept of embedding applies to the horizontal dimension of fundament progressions, which may or may not coincide with the vertical dimension of the chords.

  3. 3.

    Explicitly he writes: “Eine Theorie aber, die gerade dort versagt, wo auch das Phänomen, das sie erklären soll, ins Vage und Unbestimmte gerät, darf als adäquat gelten” ([3], p. 50). With this epistemological faux pas Dahlhaus threw the ball into Mazzola’s court, who illustrates the collapse of functional parallelism through the combinatorial description of the seven diatonic triads in the form of a Moebius strip, which is known to be non-orientable [10].

  4. 4.

    for reference and further discussion see Sect. 5.

References

  1. Biamonte, N.: Augmented-sixth chords vs. tritone substitutes. Music Theory Online 14(2) (2008). http://www.mtosmt.org/issues/mto.08.14.2/mto.08.14.2.biamonte.html

  2. Caplin, W.E.: Harmony and cadence in Gjerdingen’s ‘Prinner’. In: Neuwirth, M., Bergé, P. (eds.) What Is a Cadence? Theoretical and Analytical Perspectives on Cadences in the Classical Repertoire. Leuven University Press, Leuven (2015)

    Google Scholar 

  3. Dahlhaus, C.: Untersuchungen über die Entstehung der harmonischen Tonalität. Kassel et al.: Bärenreiter (1967)

    Google Scholar 

  4. de Jong, K., Noll, T.: Fundamental passacaglia: harmonic functions and the modes of the musical tetractys. In: Agon, C., Andreatta, M., Assayag, G., Amiot, E., Bresson, J., Mandereau, J. (eds.) MCM 2011. LNCS (LNAI), vol. 6726, pp. 98–114. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21590-2_8

    Chapter  MATH  Google Scholar 

  5. De Jong, K., Noll, T.: FFundamental bass and real bass in dialogue: tonal aspects of the structural modes. Music Theory Online 24(4) (2018). http://mtosmt.org/issues/mto.18.24.4/mto.18.24.4.de_jong_noll.html

  6. Cork, C.: The New Guide to Harmony with Lego Bricks: Revised and Extended Edition. Tadley Ewing Publications, Leicester (1996)

    Google Scholar 

  7. Elliott, J.: Insights In Jazz: An Inside View of Jazz Standard Chord Progressions. Jazzwise Publications, London (2009)

    Google Scholar 

  8. Gjerdingen, R.: Music in the Galant Style. Oxford University Press, New York (2007)

    Google Scholar 

  9. Harrison, D.: Harmonic Function in Chromatic Music. The University of Chicago Press, Chicago and London (1994)

    Google Scholar 

  10. Mazzola, G.: Die Geometrie der Töne. Birkhäuser, Basel (1990)

    Book  Google Scholar 

  11. Noll, T.: Die Vernunft in der Tradition: Neue mathematische Untersuchungen zu den alten Begriffen der Diatonizität. ZGMTH 13. Special Issue (2016). https://doi.org/10.31751/864

  12. Quinn, I.: Harmonic function without primary triads. Paper delivered at the annual meeting of the Society for Music Theory in Boston, November 2005

    Google Scholar 

  13. Rohrmeier, M.: Towards a generative syntax of tonal harmony. J. Math. Music 5(1), 35–53 (2011)

    Article  Google Scholar 

  14. Yust, J.: Distorted continuity: chromatic harmony, uniform sequences, and quantized voice leadings. Music Theor. Spectr. 37(1), 120–143 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

We wish to thank Jason Yust, David Clampitt and the anonymous reviewers for valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Noll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Noll, T., De Jong, K. (2019). Embedded Structural Modes: Unifying Scale Degrees and Harmonic Functions. In: Montiel, M., Gomez-Martin, F., Agustín-Aquino, O.A. (eds) Mathematics and Computation in Music. MCM 2019. Lecture Notes in Computer Science(), vol 11502. Springer, Cham. https://doi.org/10.1007/978-3-030-21392-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21392-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21391-6

  • Online ISBN: 978-3-030-21392-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics