Skip to main content

Nitrogen Assimilation Pathways in Budding Yeasts

  • Chapter
  • First Online:
Non-conventional Yeasts: from Basic Research to Application

Abstract

The element nitrogen is an essential macronutrient for all living organisms. Like other microorganisms, budding yeasts (phylum Ascomycota, subphylum Saccharomycotina) have evolved a versatile enzymatic toolbox for the extraction of nitrogen from a wide array of nitrogen-containing compounds. This chapter will review our current knowledge of pathways and enzymes involved in the assimilation of individual categories of nitrogen compounds including ammonia, nitrate, amino acids, amides, amines, purines, pyrimidines as well as aromatic and heterocyclic nitrogen compounds. The genes encoding the corresponding enzymes are listed whenever possible. Since the ability to assimilate specific categories of nitrogen compounds continue to be used for classification of budding yeasts, the taxonomic context of the occurrence of individual pathways and enzymes is emphasized throughout. Current as well as possible future biotechnology applications of budding yeast nitrogen assimilation pathways and enzymes are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi MS, Torres JM, Fitzpatrick PF (2010) Mechanistic studies of the yeast polyamine oxidase Fms1: kinetic mechanism, substrate specificity, and pH dependence. Biochemistry 49:10440–10448

    Article  CAS  PubMed  Google Scholar 

  • Andersen G, Andersen B, Dobritzsch D, Schnackerz KD, Piškur J (2007) A gene duplication led to specialized gamma-aminobutyrate and beta-alanine aminotransferase in yeast. FEBS J 274:1804–1817

    Article  CAS  PubMed  Google Scholar 

  • Andersen G, Björnberg O, Polakova S, Pynyaha Y, Rasmussen A, Møller K, Hofer A, Moritz T, Sandrini MP, Merico AM, Compagno C, Akerlund HE, Gojković Z, Piškur J (2008) A second pathway to degrade pyrimidine nucleic acid precursors in eukaryotes. J Mol Biol 380:656–666

    Article  CAS  PubMed  Google Scholar 

  • Andersson Rasmussen A, Kandasamy D, Beck H, Crosby SD, Björnberg O, Schnackerz KD, Piškur J (2014) Global expression analysis of the yeast Lachancea (Saccharomyces) kluyveri reveals new URC genes involved in pyrimidine catabolism. Eukaryot Cell 13:31–42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • André B, Jauniaux JC (1990) Nucleotide sequence of the yeast UGA1 gene encoding GABA transaminase. Nucleic Acids Res 18:3049

    Article  PubMed  PubMed Central  Google Scholar 

  • Avendaño A, Deluna A, Olivera H, Valenzuela L, Gonzalez A (1997) GDH3 encodes a glutamate dehydrogenase isozyme, a previously unrecognized route for glutamate biosynthesis in Saccharomyces cerevisiae. J Bacteriol 179:5594–5597

    Article  PubMed  PubMed Central  Google Scholar 

  • Avila J, Pérez MD, Brito N, González C, Siverio JM (1995) Cloning and disruption of the YNR1 gene encoding the nitrate reductase apoenzyme of the yeast Hansenula polymorpha. FEBS Lett 366:137–142

    Article  CAS  PubMed  Google Scholar 

  • Bach B, Meudec E, Lepoutre JP, Rossignol T, Blondin B, Dequin S, Camarasa C (2009) New insights into γ-aminobutyric acid catabolism: evidence for γ-hydroxybutyric acid and polyhydroxybutyrate synthesis in Saccharomyces cerevisiae. Appl Environ Microbiol 75:4231–4239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckerich JM, Lambert M, Gaillardin C (1994) LYC1 is the structural gene for lysine N-6-acetyl transferase in yeast. Curr Genet 25:24–29

    Article  CAS  PubMed  Google Scholar 

  • Berg PC, Rodden FA (1976) Purification of D-amino acid oxidase from Trigonopsis variabilis. Anal Biochem 71:214–222

    Article  CAS  PubMed  Google Scholar 

  • Björnberg O, Vodnala M, Domkin V, Hofer A, Rasmussen A, Andersen G, Piškur J (2010) Ribosylurea accumulates in yeast urc4 mutants. Nucleosides Nucleotides Nucleic Acids 29:433–437

    Article  PubMed  CAS  Google Scholar 

  • Blandin G, Ozier-Kalogeropoulos O, Wincker P, Artiguenave F, Dujon B (2000) Genomic exploration of the hemiascomycetous yeasts: 16. Candida tropicalis. FEBS Lett 487:91–94

    Article  CAS  PubMed  Google Scholar 

  • Böer E, Schröter A, Bode R, Piontek M, Kunze G (2009) Characterization and expression analysis of a gene cluster for nitrate assimilation from the yeast Arxula adeninivorans. Yeast 26:83–93

    Article  PubMed  CAS  Google Scholar 

  • Bondar DC, Beckerich JM, Bonnarme P (2005) Involvement of a branched-chain aminotransferase in production of volatile sulfur compounds in Yarrowia lipolytica. Appl Environ Microbiol 71:4585–4591

    Article  CAS  PubMed  Google Scholar 

  • Brady BL (1965) Utilization of amino compounds by yeasts of the genus Saccharomyces. Antonie Van Leeuwenhoek 31:95–102

    Article  CAS  PubMed  Google Scholar 

  • Brandriss MC, Falvey DA (1992) Proline biosynthesis in Saccharomyces cerevisiae: analysis of the PRO3 gene, which encodes Δ1-pyrroline-5-carboxylate reductase. J Bacteriol 174:3782–3788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandriss MC, Krzywicki KA (1986) Amino-terminal fragments of Δ1-pyrroline-5-carboxylate dehydrogenase direct β-galactosidase to the mitochondrial matrix in Saccharomyces cerevisiae. Mol Cell Biol 6:3502–3512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandriss MC, Magasanik B (1979) Genetics and physiology of proline utilization in Saccharomyces cerevisiae: enzyme induction by proline. J Bacteriol 140:498–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandriss MC, Magasanik B (1980) Proline: an essential intermediate in arginine degradation in Saccharomyces cerevisiae. J Bacteriol 143:1403–1410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandriss MC, Magasanik B (1981) Subcellular compartmentation in control of converging pathways for proline and arginine metabolism in Saccharomyces cerevisiae. J Bacteriol 145:1359–1364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brewis EA, van Der Walt JP, Priora BA (1995) The utilization of aromatic, cyclic and heterocyclic nitriles by yeasts. Syst Appl Microbiol 18:338–342

    Article  CAS  Google Scholar 

  • Brito N, Avila J, Perez MD, Gonzalez C, Siverio JM (1996) The genes YNI1 and YNR1, encoding nitrite reductase and nitrate reductase respectively in the yeast Hansenula polymorpha, are clustered and co-ordinately regulated. Biochem J 317:89–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192:73–105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brouquisse R, Weigel P, Rhodes D, Yocum CF, Hanson AD (1989) Evidence for a ferredoxin-dependent choline monooxygenase from spinach chloroplast stroma. Plant Physiol 90:322–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunke S, Seider K, Richter ME, Bremer-Streck S, Ramachandra S, Kiehntopf M, Brock M, Hube B (2014) Histidine degradation via an aminotransferase increases the nutritional flexibility of Candida glabrata. Eukaryot Cell 13:758–765

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buckholz RG, Cooper TG (1991) The allantoinase (DAL1) gene of Saccharomyces cerevisiae. Yeast 7:913–923

    Article  CAS  PubMed  Google Scholar 

  • Cao J, Singh NK, Locy RD (2014) Characterization of the recombinant succinic semi-aldehyde dehydrogenase from Saccharomyces cerevisiae. Yeast 31:411–420

    Article  CAS  PubMed  Google Scholar 

  • Carr RJ, Bilton RF, Atkinson T (1985) Mechanism of biodegradation of paraquat by Lipomyces starkeyi. Appl Environ Microbiol 49:1290–1294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang TH, Abelson J (1990) Identification of a putative amidase gene in yeast Saccharomyces cerevisiae. Nucleic Acids Res 18:7180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chattopadhyay MK, Tabor CW, Tabor H (2003) Spermidine but not spermine is essential for hypusine biosynthesis and growth in Saccharomyces cerevisiae: spermine is converted to spermidine in vivo by the FMS1-amine oxidase. Proc Natl Acad Sci U S A 100:13869–13874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chéret G, Pallier C, Valens M, Diagnan-Fornier B, Fukuhara H, Bolotin-Fukuhara M, Sor F (1993) The DNA sequence analysis of the HAP4-LAP4 region on chromosome XI of Saccharomyces cerevisiae suggests the presence of a second aspartate aminotransferase gene in yeast. Yeast 9:1259–1265

    Article  PubMed  Google Scholar 

  • Choudary PV, Rao GR (1984) Molecular analysis of inorganic nitrogen assimilation in yeasts. Arch Microbiol 138:183–186

    Article  CAS  Google Scholar 

  • Choudary PV, Deobagkar DN, Rao GR (1986) Partial purification and properties of the assimilatory nitrate reductase of the food yeast Candida utilis. Microbios 47:135–147

    CAS  PubMed  Google Scholar 

  • Coleman ST, Fang TK, Rovinsky SA, Turano FJ, Moye-Rowley WS (2001) Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. J Biol Chem 276:244–250

    Article  CAS  PubMed  Google Scholar 

  • Colón M, Hernández F, López K, Quezada H, González J, López G, Aranda C, González A (2011) Saccharomyces cerevisiae Bat1 and Bat2 aminotransferases have functionally diverged from the ancestral-like Kluyveromyces lactis orthologous enzyme. PLoS One 6:e16099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cooper TG (1982) Nitrogen metabolism in Saccharomyces cerevisiae. In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces: metabolism and gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 39–99

    Google Scholar 

  • Cooper TG (2002) Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol Rev 26:223–238

    Article  CAS  PubMed  Google Scholar 

  • Cooper TG, Gorski M, Turoscy V (1979) A cluster of three genes responsible for allantoin degradation in Saccharomyces cerevisiae. Genetics 92:383–396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper TG, Lam C, Turoscy V (1980) Structural analysis of the dur loci in S. cerevisiae: two domains of a single multifunctional gene. Genetics 94:555–580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corte ED, Stirpe F (1972) The regulation of rat liver xanthine oxidase. Involvement of thiol groups in the conversion of the enzyme activity from dehydrogenase (type D) into oxidase (type O) and purification of the enzyme. Biochem J 126:739–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cultrone A, Scazzocchio C, Rochet M, Montero-Morán G, Drevet C, Fernández-Martín R (2005) Convergent evolution of hydroxylation mechanisms in the fungal kingdom: molybdenum cofactor-independent hydroxylation of xanthine via α-ketoglutarate-dependent dioxygenases. Mol Microbiol 57:276–290

    Article  CAS  PubMed  Google Scholar 

  • Deeley MC (1992) Adenine deaminase and adenine utilization in Saccharomyces cerevisiae. J Bacteriol 174:3102–3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Degols G, Jauniaux JC, Wiame JM (1987) Molecular characterization of transposable-element-associated mutations that lead to constitutive L-ornithine aminotransferase expression in Saccharomyces cerevisiae. Eur J Biochem 165:289–296

    Article  CAS  PubMed  Google Scholar 

  • DeLuna A, Avendano A, Riego L, Gonzalez A (2001) NADP-glutamate dehydrogenase isoenzymes of Saccharomyces cerevisiae. Purification, kinetic properties, and physiological roles. J Biol Chem 276:43775–43783

    Article  CAS  PubMed  Google Scholar 

  • DeLuna A, Quezada H, Gómez-Puyou A, González A (2005) Asparaginyl deamidation in two glutamate dehydrogenase isoenzymes from Saccharomyces cerevisiae. Biochem Biophys Res Commun 328:1083–1090

    Article  CAS  PubMed  Google Scholar 

  • Der Garabedian PA (1986) Candida δ-aminovalerate:α-ketoglutarate aminotransferase: purification and enzymologic properties. Biochemistry 25:5507–5512

    Article  Google Scholar 

  • Der Garabedian PA, Lotti AM, Vermeersch JJ (1986) 4-Aminobutyrate:2-oxoglutarate aminotransferase from Candida. Purification and properties. Eur J Biochem 156:589–596

    Article  Google Scholar 

  • Di Carlo FJ, Schultz AS, Kent AM (1952) On the mechanism of pyrimidine metabolism by yeasts. J Biol Chem 199:333–343

    Google Scholar 

  • Di Carlo FJ, Schultz AS, Kent AM (1953) The mechanism of allantoin catabolism by yeast. Arch Biochem Biophys 44:468–474

    Article  Google Scholar 

  • Dias JC, Rezende RP, Rosa CA, Lachance MA, Linardi VR (2000) Enzymatic degradation of nitriles by a Candida guilliermondii UFMG-Y65. Can J Microbiol 46:525–531

    Article  CAS  PubMed  Google Scholar 

  • Dunlop PC, Roon RJ (1975) L-asparaginase of Saccharomyces cerevisiae: an extracellular enzyme. J Bacteriol 122:1017–1024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dunlop PC, Roon RJ, Even HL (1976) Utilization of D-asparagine by Saccharomyces cerevisiae. J Bacteriol 125:999–1004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eden A, Simchen G, Benvenisty N (1996) Two yeast homologs of ECA39, a target for c-Myc regulation, code for cytosolic and mitochondrial branched-chain amino acid aminotransferases. J Biol Chem 271:20242–20245

    Article  CAS  PubMed  Google Scholar 

  • Erbs P, Exinger F, Jund R (1997) Characterization of the Saccharomyces cerevisiae FCY1 gene encoding cytosine deaminase and its homologue FCA1 of Candida albicans. Curr Genet 31:1–6

    Article  CAS  PubMed  Google Scholar 

  • Faber KN, Keizer-Gunnink I, Pluim D, Harder W, Ab G, Veenhuis M (1994) The N-terminus of amine oxidase of Hansenula polymorpha contains a peroxisomal targeting signal. FEBS Lett 357:115–120

    Article  Google Scholar 

  • Fattakhova AN, Ofitserov EN, Garusov AV (1991) Cytochrome P-450-dependent catabolism of triethanolamine in Rhodotorula mucilaginosa. Biodegradation 2:107–113

    Article  CAS  PubMed  Google Scholar 

  • Filetici P, Martegani MP, Valenzuela L, González A, Ballario P (1996) Sequence of the GLT1 gene from Saccharomyces cerevisiae reveals the domain structure of yeast glutamate synthase. Yeast 12:1359–1366

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick DA, Logue ME, Butler G (2008) Evidence of recent interkingdom horizontal gene transfer between bacteria and Candida parapsilosis. BMC Evol Biol 8:181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Folch JL, Antaramián A, Rodríguez L, Bravo A, Brunner A, González A (1989) Isolation and characterization of a Saccharomyces cerevisiae mutant with impaired glutamate synthase activity. J Bacteriol 171:6776–6781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaillardin C, Fournier P, Sylvestre G, Heslot H (1976) Mutants of Saccharomycopsis lipolytica defective in lysine catabolism. J Bacteriol 125:48–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ganguly S, Mummaneni P, Steinbach PJ, Klein DC, Coon SL (2001) Characterization of the Saccharomyces cerevisiae homolog of the melatonin rhythm enzyme arylalkylamine N-acetyltransferase (EC 2.3.1.87). J Biol Chem 276:47239–47247

    Article  CAS  PubMed  Google Scholar 

  • Ganter PF (2006) Yeast and invertebrate associations. In: Péter G, Rosa C (eds) Biodiversity and Ecophysiology of Yeasts. The Yeast handbook. Springer, Berlin/Heidelberg, pp 303–370

    Chapter  Google Scholar 

  • García-Campusano F, Anaya VH, Robledo-Arratia L, Quezada H, Hernández H, Riego L, González A (2009) ALT1-encoded alanine aminotransferase plays a central role in the metabolism of alanine in Saccharomyces cerevisiae. Can J Microbiol 55:368–374

    Article  PubMed  CAS  Google Scholar 

  • García-Lugo P, González C, Perdomo G, Brito N, Avila J, de La Rosa JM, Siverio JM (2000) Cloning, sequencing, and expression of H.a.YNR1 and H.a.YNI1, encoding nitrate and nitrite reductases in the yeast Hansenula anomala. Yeast 16:1099–1105

    Article  PubMed  Google Scholar 

  • Gillyon C, Haywood GW, Large PJ, Nellen B, Robertson A (1987) Putrescine breakdown in the yeast Candida boidini: subcellular location of some of the enzymes involved and properties of two acetamidoaldehyde dehydrogenases. J Gen Microbiol 133:2477–2485

    CAS  Google Scholar 

  • Gojković Z, Jahnke K, Schnackerz KD, Piškur J (2000) PYD2 encodes 5,6-dihydropyrimidine amidohydrolase, which participates in a novel fungal catabolic pathway. J Mol Biol 295:1073–1087

    Article  PubMed  CAS  Google Scholar 

  • Gojković Z, Sandrini MP, Piškur J (2001) Eukaryotic β-alanine synthases are functionally related but have a high degree of structural diversity. Genetics 158:999–1011

    PubMed  PubMed Central  Google Scholar 

  • González FJ, Montes J, Martin F, López MC, Fermiñán E, Catalán J, Galán MA, Domínguez A (1997) Molecular cloning of TvDAO1, a gene encoding a D-amino acid oxidase from Trigonopsis variabilis and its expression in Saccharomyces cerevisiae and Kluyveromyces lactis. Yeast 13:1399–1408

    Article  PubMed  Google Scholar 

  • Green J, Large PJ (1983) Oxidation of dimethylamine and trimethylamine in methazotrophic yeasts by microsomal mono-oxygenases sensitive to carbon monoxide. Biochem Biophys Res Commun 113:900–907

    Article  CAS  PubMed  Google Scholar 

  • Green J, Large PJ (1984) Subcellular localization and properties of partially purified dimethylamine and trimethylamine mono-oxygenase activities in Candida utilis. J Gen Microbiol 130:2577–2588

    CAS  PubMed  Google Scholar 

  • Green J, Haywood GW, Large PJ (1982) More than one amine oxidase is involved in the metabolism of primary amines supplied as nitrogen source. J Gen Microbiol 128:991–996

    CAS  Google Scholar 

  • Green J, Haywood GW, Large PJ (1983) Serological differences between the multiple amine oxidases of yeasts and comparison of the specificities of the purified enzymes from Candida utilis and Pichia pastoris. Biochem J 211:481–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gromes R, Schwartz H, Heinrich M, Johannssen W (1991) Nitrate reductase from yeast: cultivation, partial purification and characterization. Appl Microbiol Biotechnol 35:491–495

    Article  CAS  Google Scholar 

  • Gunasekaran M, Gunasekaran U (1999) Partial purification and properties of putrescine oxidase from Candida guilliermondii. Appl Biochem Biotechnol 76:229–336

    Article  CAS  PubMed  Google Scholar 

  • Hachimori A, Ito M, Samejima T (1974) Some properties of glutamine synthetase from baker’s yeast. J Biochem 76:1075–1081

    CAS  PubMed  Google Scholar 

  • Hall DA (1952) Histidine α-deaminase and the production of urocanic acid in the mammal. Biochem J 51:499–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer T, Bode R (1992) Purification and characterization of an inducible L-lysine: 2-oxoglutarate 6-aminotransferase from Candida utilis. J Basic Microbiol 32:21–27

    Article  CAS  PubMed  Google Scholar 

  • Hammer T, Bode R, Schmidt H, Birnbaum D (1991a) Distribution of three lysine-catabolizing enzymes in various yeast species. J Basic Microbiol 31:43–49

    Article  CAS  Google Scholar 

  • Hammer T, Bode R, Birnbaum D (1991b) Occurrence of a novel yeast enzyme, L-lysine ε-dehydrogenase, which catalyses the first step of lysine catabolism in Candida albicans. Microbiology 137:711–715

    CAS  Google Scholar 

  • Hanson AD, Pribat A, Waller JC, de Crécy-Lagard V (2009) ‘Unknown’ proteins and ‘orphan’ enzymes: the missing half of the engineering parts list – and how to find it. Biochem J 425:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hartzog PE, Nicholson BP, McCusker JH (2005) Cytosine deaminase MX cassettes as positive/negative selectable markers in Saccharomyces cerevisiae. Yeast 22:789–798

    Article  CAS  PubMed  Google Scholar 

  • Hata S, Shirata K, Takagishi H (1986) Degradation of paraquat and diquat by the yeast Lipomyces starkeyi. J Gen Appl Microbiol 32:193–202

    Article  CAS  Google Scholar 

  • Haywood GW, Large PJ (1981) Microbial oxidation of amines. Distribution, purification and properties of two primary-amine oxidases from the yeast Candida boidinii grown on amines as sole nitrogen source. Biochem J 199:187–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haywood GW, Large PJ (1985) The occurrence, subcellular localization and partial purification of diamine acetyltransferase in the yeast Candida boidinii grown on spermidine or putrescine as sole nitrogen source. Eur J Biochem 148:277–283

    Article  CAS  PubMed  Google Scholar 

  • Haywood GW, Large PJ (1986) 4-acetamidobutyrate deacetylase in the yeast Candida boidinii grown on putrescine or spermidine as sole nitrogen source and its probable role in polyamine catabolism. J Gen Microbiol 132:7–14

    CAS  Google Scholar 

  • Hazelwood LA, Daran JM, van Maris AJ, Pronk JT, Dickinson JR (2008) The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl Environ Microbiol 74:2259–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmings BA (1980) Purification and properties of the phospho and dephospho forms of yeast NAD-dependent glutamate dehydrogenase. J Biol Chem 255:7925–7932

    CAS  PubMed  Google Scholar 

  • Hipkin CR, Kau DA, Cannons AC (1993) Further characterization of the assimilatory nitrate reductase from the yeast Candida nitratophila. J Gen Microbiol 139:473–478

    Article  CAS  PubMed  Google Scholar 

  • Holmes AR, McNaughton GS, More RD, Shepherd MG (1991) Ammonium assimilation by Candida albicans and other yeasts: a 13N isotope study. Can J Microbiol 37:226–232

    Article  CAS  PubMed  Google Scholar 

  • Iraqui I, Vissers S, Cartiaux M, Urrestarazu A (1998) Characterisation of Saccharomyces cerevisiae ARO8 and ARO9 genes encoding aromatic aminotransferases I and II reveals a new aminotransferase subfamily. Mol Gen Genet 257:238–248

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Hemmi H, Kataoka K, Mukai Y, Yoshimura T (2008) A novel zinc-dependent D-serine dehydratase from Saccharomyces cerevisiae. Biochem J 409:399–406

    Article  CAS  PubMed  Google Scholar 

  • Jankowska DA, Trautwein-Schult A, Cordes A, Hoferichter P, Klein C, Bode R, Baronian K, Kunze G (2013) Arxula adeninivorans xanthine oxidoreductase and its application in the production of food with low purine content. J Appl Microbiol 115:796–807

    Article  CAS  PubMed  Google Scholar 

  • Jauniaux JC, Urrestarazu LA, Wiame JM (1978) Arginine metabolism in Saccharomyces cerevisiae: subcellular localization of the enzymes. J Bacteriol 133:1096–1107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jauniaux JC, Dubois E, Vissers S, Crabeel M, Wiame JM (1982) Molecular cloning, DNA structure, and RNA analysis of the arginase gene in Saccharomyces cerevisiae. A study of cis-dominant regulatory mutations. EMBO J 1:1125–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones GE, Mortimer RK (1973) Biochemical properties of yeast L-asparaginase. Biochem Genet 9:131–146

    Article  CAS  PubMed  Google Scholar 

  • Kay CJ, Barber MJ, Solomonson LP, Kau D, Cannons AC, Hipkin CR (1990) Spectroscopic, thermodynamic and kinetic properties of Candida nitratophila nitrate reductase. Biochem J 272:545–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617–624

    Article  CAS  PubMed  Google Scholar 

  • Kim KW, Kamerud JQ, Livingston DM, Roon RJ (1988) Asparaginase II of Saccharomyces cerevisiae. Characterization of the ASP3 gene. J Biol Chem 263:11948–11953

    CAS  PubMed  Google Scholar 

  • Kispal G, Steiner H, Court DA, Rolinski B, Lill R (1996) Mitochondrial and cytosolic branched-chain amino acid transaminases from yeast, homologs of the myc oncogene-regulated Eca39 protein. J Biol Chem 271:24458–24464

    Article  CAS  PubMed  Google Scholar 

  • Klompmaker SH, Kilic A, Baerends RJ, Veenhuis M, van der Klei IJ (2010) Activation of a peroxisomal Pichia pastoris D-amino acid oxidase, which uses D-alanine as a preferred substrate, depends on pyruvate carboxylase. FEMS Yeast Res 10:708–716

    Article  CAS  PubMed  Google Scholar 

  • Koyama Y, Ichikawa T, Nakano E (1996) Cloning, sequence analysis, and expression in Escherichia coli of the gene encoding the Candida utilis urate oxidase (uricase). J Biochem 120:969–973

    Article  CAS  PubMed  Google Scholar 

  • Kradolfer P, Niederberger P, Hütter R (1982) Tryptophan degradation in Saccharomyces cerevisiae: characterization of two aromatic aminotransferases. Arch Microbiol 133:242–248

    Article  CAS  PubMed  Google Scholar 

  • Krassowski T, Coughlan AY, Shen XX, Zhou X, Kominek J, Opulente DA, Riley R, Grigoriev IV, Maheshwari N, Shields DC, Kurtzman CP, Hittinger CT, Rokas A, Wolfe KH (2018) Evolutionary instability of CUG-Leu in the genetic code of budding yeasts. Nat Commun 9:1887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Krzywicki KA, Brandriss MC (1984) Primary structure of the nuclear PUT2 gene involved in the mitochondrial pathway for proline utilization in Saccharomyces cerevisiae. Mol Cell Biol 4:2837–2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kucha JA, Dooley DM (2001) Cloning, sequence analysis, and characterization of the ‘lysyl oxidase’ from Pichia pastoris. J Inorg Biochem 83:193–204

    Article  CAS  PubMed  Google Scholar 

  • Lacerda VA, Marsden A, Ledingham WM (1992) Ammonia utilization in S. cerevisiae under chemostatic growth. Appl Biochem Biotechnol 32:15–21

    Article  CAS  PubMed  Google Scholar 

  • Lambou K, Pennati A, Valsecchi I, Tada R, Sherman S, Sato H, Beau R, Gadda G, Latgé JP (2013) Pathway of glycine betaine biosynthesis in Aspergillus fumigatus. Eukaryot Cell 12:853–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landry J, Sternglanz R (2003) Yeast Fms1 is a FAD-utilizing polyamine oxidase. Biochem Biophys Res Commun 303:771–776

    Article  CAS  PubMed  Google Scholar 

  • Large PJ (1986) Degradation of organic nitrogen compounds by yeasts. Yeast 2:1–34

    Article  CAS  Google Scholar 

  • Large PJ, Robertson A (1988) The subcellular location of 4-aminobutyrate aminotransferase in Candida boidinii and its probable role in the breakdown of putrescine and spermidine. Yeast 4:149–153

    Article  CAS  Google Scholar 

  • Large PJ, Robertson A (1991) The route of lysine breakdown in Candida tropicalis. FEMS Microbiol Lett 66:209–213

    Article  CAS  PubMed  Google Scholar 

  • Large PJ, Waterham HR, Veenhuis M (1990) Subcellular location of the enzymes of purine breakdown in the yeast Candida famata grown on uric acid. FEMS Microbiol Lett 72:303–307

    Article  CAS  Google Scholar 

  • LaRue TA, Spencer JF (1967a) The utilization of D-amino acid by yeast. Can J Microbiol 13:777–788

    Article  CAS  PubMed  Google Scholar 

  • LaRue TA, Spencer JFT (1967b) The utilization of imidazoles by yeasts. Can J Microbiol 13:789–794

    Article  CAS  PubMed  Google Scholar 

  • LaRue TA, Spencer JF (1968) The utilization of purines and pyrimidines by yeasts. Can J Microbiol 14:79–86

    Article  CAS  PubMed  Google Scholar 

  • Lawther RP, Riemer E, Chojnacki B, Cooper TG (1974) Clustering of the genes for allantoin degradation in Saccharomyces cerevisiae. J Bacteriol 119:461–468

    CAS  PubMed  PubMed Central  Google Scholar 

  • League GP, Slot JC, Rokas A (2012) The ASP3 locus in Saccharomyces cerevisiae originated by horizontal gene transfer from Wickerhamomyces. FEMS Yeast Res 12:859–863

    Article  CAS  PubMed  Google Scholar 

  • Lee IR, Yang L, Sebetso G, Allen R, Doan TH, Blundell R, Lui EY, Morrow CA, Fraser JA (2013) Characterization of the complete uric acid degradation pathway in the fungal pathogen Cryptococcus neoformans. PLoS One 8:e64292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linardi VR, Dias JCT, Rosa CA (1996) Utilization of acetonitrile and other aliphatic nitriles by a Candida famata strain. FEMS Microbiol Lett 144:67–71

    Article  CAS  PubMed  Google Scholar 

  • Linder T (2014) CMO1 encodes a putative choline monooxygenase and is required for the utilization of choline as the sole nitrogen source in the yeast Scheffersomyces stipitis (syn. Pichia stipitis). Microbiology 160:929–940

    Article  CAS  PubMed  Google Scholar 

  • Linder T (2018) Genetic redundancy in the catabolism of methylated amines in the yeast Scheffersomyces stipitis. Antonie Van Leeuwenhoek 111:401–411

    Article  CAS  PubMed  Google Scholar 

  • Linder T (2019a) A genomic survey of nitrogen assimilation pathways in budding yeasts (sub-phylum Saccharomycotina). Yeast. https://doi.org/10.1002/yea.3364

    Article  PubMed  CAS  Google Scholar 

  • Linder T (2019b) Phenotypical characterisation of a putative ω-amino acid transaminase in the yeast Scheffersomyces stipitis. Arch Microbiol 201:185–192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu B, Sutton A, Sternglanz R (2005) A yeast polyamine acetyltransferase. J Biol Chem 280:16659–16664

    Article  CAS  PubMed  Google Scholar 

  • Ljungdahl PO (2009) Amino-acid-induced signalling via the SPS-sensing pathway in yeast. Biochem Soc Trans 37:242–247

    Article  CAS  PubMed  Google Scholar 

  • Lohkamp B, Andersen B, Piškur J, Dobritzsch D (2006) The crystal structures of dihydropyrimidinases reaffirm the close relationship between cyclic amidohydrolases and explain their substrate specificity. J Biol Chem 281:13762–13776

    Article  CAS  PubMed  Google Scholar 

  • Magasanik B (2003) Ammonia assimilation by Saccharomyces cerevisiae. Eukaryot Cell 2:827–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magasanik B, Kaiser CA (2002) Nitrogen regulation in Saccharomyces cerevisiae. Gene 290:1–18

    Article  CAS  PubMed  Google Scholar 

  • Martin E, Varotto Boccazzi I, De Marco L, Bongiorno G, Montagna M, Sacchi L, Mensah P, Ricci I, Gradoni L, Bandi C, Epis S (2018) The mycobiota of the sand fly Phlebotomus perniciosus: involvement of yeast symbionts in uric acid metabolism. Environ Microbiol 20:1064–1077

    Article  CAS  PubMed  Google Scholar 

  • McNeil JB, McIntosh EM, Taylor BV, Zhang FR, Tang S, Bognar AL (1994) Cloning and molecular characterization of three genes, including two genes encoding serine hydroxymethyltransferases, whose inactivation is required to render yeast auxotrophic for glycine. J Biol Chem 269:9155–9165

    CAS  PubMed  Google Scholar 

  • McNeil JB, Zhang F, Taylor BV, Sinclair DA, Pearlman RE, Bognar AL (1997) Cloning, and molecular characterization of the GCV1 gene encoding the glycine cleavage T-protein from Saccharomyces cerevisiae. Gene 186:13–20

    Article  CAS  PubMed  Google Scholar 

  • Messenguy F, André B, Dubois E (2006) Diversity of nitrogen metabolism among yeast species: regulatory and evolutionary aspects. In: Péter G, Rosa C (eds) Biodiversity and Ecophysiology of Yeasts. The Yeast handbook. Springer, Berlin/Heidelberg, pp 123–153

    Chapter  Google Scholar 

  • Middelhoven WJ (1964) The pathway of arginine breakdown in Saccharomyces cerevisiae. Biochim Biophys Acta 93:650–652

    Article  CAS  PubMed  Google Scholar 

  • Middelhoven WJ, van Doesburg W (2007) Utilization of hexamethylenetetramine (urotropine) by bacteria and yeasts. Antonie Van Leeuwenhoek 91:191–196

    Article  CAS  PubMed  Google Scholar 

  • Middelhoven WJ, van Eijk J, van Renesse R, Blijham JM (1978) A mutant of Saccharomyces cerevisiae lacking catabolic NAD-specific glutamate dehydrogenase. Growth characteristics of the mutant and regulation of enzyme synthesis in the wild-type strain. Antonie Van Leeuwenhoek 44:311–320

    Article  CAS  PubMed  Google Scholar 

  • Middelhoven WJ, de Jong IM, de Winter M (1991) Arxula adeninivorans, a yeast assimilating many nitrogenous and aromatic compounds. Antonie Van Leeuwenhoek 59:129–137

    Article  CAS  PubMed  Google Scholar 

  • Miller SM, Magasanik B (1990) Role of NAD-linked glutamate dehydrogenase in nitrogen metabolism in Saccharomyces cerevisiae. J Bacteriol 172:4927–4935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minehart PL, Magasanik B (1992) Sequence of the GLN1 gene of Saccharomyces cerevisiae: role of the upstream region in regulation of glutamine synthetase expression. J Bacteriol 174:1828–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mira-Gutiérrez J, Garcia-Martos P, Mira-Gordillo AJ (1995) Identification of yeasts by hydrolysis of amides. Mycoses 38:101–106

    Article  PubMed  Google Scholar 

  • Mitchell AP (1985) The GLN1 locus of Saccharomyces cerevisiae encodes glutamine synthetase. Genetics 111:243–258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montalvo-Arredondo J, Jiménez-Benítez Á, Colón-González M, González-Flores J, Flores-Villegas M, González A, Riego-Ruiz L (2015) Functional roles of a predicted branched chain aminotransferase encoded by the LkBAT1 gene of the yeast Lachancea kluyveri. Fungal Genet Biol 85:71–82

    Article  CAS  PubMed  Google Scholar 

  • Montero-Morán GM, Li M, Rendòn-Huerta E, Jourdan F, Lowe DJ, Stumpff-Kane AW, Feig M, Scazzocchio C, Hausinger RP (2007) Purification and characterization of the FeII- and α-ketoglutarate-dependent xanthine hydroxylase from Aspergillus nidulans. Biochemistry 46:5293–5304

    Article  PubMed  CAS  Google Scholar 

  • Mori N, Shirakawa K, Uzura K, Kitamoto Y, Ichikawa Y (1988) Formation of ethylene-glycol and trimethylamine from choline by Candida tropicalis. FEMS Microbiol Lett 51:41–44

    Article  CAS  Google Scholar 

  • Morin PJ, Subramanian GS, Gilmore TD (1992) AAT1, a gene encoding a mitochondrial aspartate aminotransferase in Saccharomyces cerevisiae. Biochim Biophys Acta 1171:211–214

    Article  CAS  PubMed  Google Scholar 

  • Moye WS, Amuro N, Rao JK, Zalkin H (1985) Nucleotide sequence of yeast GDH1 encoding nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase. J Biol Chem 260:8502–8508

    CAS  PubMed  Google Scholar 

  • Nagarajan L, Storms RK (1997) Molecular characterization of GCV3, the Saccharomyces cerevisiae gene coding for the glycine cleavage system hydrogen carrier protein. J Biol Chem 272:4444–4450

    Article  CAS  PubMed  Google Scholar 

  • Nagasu T, Hall BD (1985) Nucleotide sequence of the GDH gene coding for the NADP-specific glutamate dehydrogenase of Saccharomyces cerevisiae. Gene 37:247–253

    Article  CAS  PubMed  Google Scholar 

  • Navarathna DH, Harris SD, Roberts DD, Nickerson KW (2010) Evolutionary aspects of urea utilization by fungi. FEMS Yeast Res 10:209–213

    Article  CAS  PubMed  Google Scholar 

  • Nishimura K, Yamamoto M, Nakagomi T, Takiguchi Y, Naganuma T, Uzuka Y (2002) Biodegradation of triazine herbicides on polyvinylalcohol gel plates by the soil yeast Lipomyces starkeyi. Appl Microbiol Biotechnol 58:848–852

    Article  CAS  PubMed  Google Scholar 

  • Nolan LM, Harnedy PA, Turner P, Hearne AB, O’Reilly C (2003) The cyanide hydratase enzyme of Fusarium lateritium also has nitrilase activity. FEMS Microbiol Lett 221:161–165

    Article  CAS  PubMed  Google Scholar 

  • Norkrans B (1969) Hydroxylamine as the sole nitrogen source for growth of some Candida sp. Acta Chem Scand 23:1457–1459

    Article  CAS  PubMed  Google Scholar 

  • Okumura I, Yamamoto T (1978) Enzymic racemization of allantoin. J Biochem 84:891–895

    Article  CAS  PubMed  Google Scholar 

  • Okumura I, Kondo K, Miyake Y, Itaya K, Yamamoto T (1976) Stereospecificity of conversion of uric acid into allantoic acid by enzymes of Candida utilis. J Biochem 79:1013–1019

    Article  CAS  PubMed  Google Scholar 

  • Peñalosa-Ruiz G, Aranda C, Ongay-Larios L, Colon M, Quezada H, Gonzalez A (2012) Paralogous ALT1 and ALT2 retention and diversification have generated catalytically active and inactive aminotransferases in Saccharomyces cerevisiae. PLoS One 7:e45702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petersen JG, Kielland-Brandt MC, Nilsson-Tillgren T, Bornaes C, Holmberg S (1988) Molecular genetics of serine and threonine catabolism in Saccharomyces cerevisiae. Genetics 119:527–534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pignocchi C, Berardi E, Cox BS (1998) Nitrate reduction and the isolation of Nit- mutants in Hansenula polymorpha. Microbiology 144:2323–2330

    Article  CAS  PubMed  Google Scholar 

  • Prasad S, Sharma DR, Bhalla TC (2005) Nitrile- and amide-hydrolysing activity in Kluyveromyces thermotolerans MGBY 37. World J Microbiol Biotechnol 21:1447–1450

    Article  CAS  Google Scholar 

  • Ramazzina I, Folli C, Secchi A, Berni R, Percudani R (2006) Completing the uric acid degradation pathway through phylogenetic comparison of whole genomes. Nat Chem Biol 2:144–148

    Article  CAS  PubMed  Google Scholar 

  • Ramos F, el Guezzar M, Grenson M, Wiame JM (1985) Mutations affecting the enzymes involved in the utilization of 4-aminobutyric acid as nitrogen source by the yeast Saccharomyces cerevisiae. Eur J Biochem 149:401–404

    Article  CAS  PubMed  Google Scholar 

  • Rezende RP, Dias JC, Rosa CA, Carazza F, Linardi VR (1999) Utilization of nitriles by yeasts isolated from a Brazilian gold mine. J Gen Appl Microbiol 45:185–192

    Article  CAS  PubMed  Google Scholar 

  • Romagnoli G, Verhoeven MD, Mans R, Fleury Rey Y, Bel-Rhlid R, van den Broek M, Seifar RM, Ten Pierick A, Thompson M, Müller V, Wahl SA, Pronk JT, Daran JM (2014) An alternative, arginase-independent pathway for arginine metabolism in Kluyveromyces lactis involves guanidinobutyrase as a key enzyme. Mol Microbiol 93:369–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roon RJ, Even HL (1973) Regulation of the nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenases of Saccharomyces cerevisiae. J Bacteriol 116:367–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roon RJ, Levenberg B (1972) Urea amidolyase. I. Properties of the enzyme from Candida utilis. J Biol Chem 247:4107–4113

    CAS  PubMed  Google Scholar 

  • Roon RJ, Even HL, Larimore F (1974) Glutamate synthase: properties of the reduced nicotinamide adenine dinucleotide-dependent enzyme from Saccharomyces cerevisiae. J Bacteriol 118:89–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ross J, Reid GA, Dawes IW (1988) The nucleotide sequence of the LPD1 gene encoding lipoamide dehydrogenase in Saccharomyces cerevisiae: comparison between eukaryotic and prokaryotic sequences for related enzymes and identification of potential upstream control sites. J Gen Microbiol 134:1131–1139

    CAS  PubMed  Google Scholar 

  • Rothstein M (1965) Intermediates of lysine dissimilation in the yeast, Hansenula saturnus. Arch Biochem Biophys 111:467–476

    Article  CAS  PubMed  Google Scholar 

  • Rząd K, Milewski S, Gabriel I (2018) Versatility of putative aromatic aminotransferases from Candida albicans. Fungal Genet Biol 110:26–37

    Article  PubMed  CAS  Google Scholar 

  • Sadowsky MJ, Koskinen WC, Bischoff M, Barber BL, Becker JM, Turco RF (2009) Rapid and complete degradation of the herbicide picloram by Lipomyces kononenkoae. J Agric Food Chem 57:4878–4882

    Article  CAS  PubMed  Google Scholar 

  • Saint-Marc C, Daignan-Fornier B (2004) GUD1 (YDL238c) encodes Saccharomyces cerevisiae guanine deaminase, an enzyme expressed during post-diauxic growth. Yeast 21:1359–1363

    Article  CAS  PubMed  Google Scholar 

  • Sampath V, Liu B, Tafrov S, Srinivasan M, Rieger R, Chen EI, Sternglanz R (2013) Biochemical characterization of Hpa2 and Hpa3, two small closely related acetyltransferases from Saccharomyces cerevisiae. J Biol Chem 288:21506–21513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt H, Bode R (1992) Characterization of a novel enzyme, N6-acetyl-L-lysine: 2-oxoglutarate aminotransferase, which catalyses the second step of lysine catabolism in Candida maltosa. Antonie Van Leeuwenhoek 62:285–290

    Article  CAS  PubMed  Google Scholar 

  • Schmidt H, Bode R, Birnbaum D (1988a) A novel enzyme, L-lysine pyruvate aminotransferase, catalyses the first step of lysine catabolism in Pichia guilliermondii. FEMS Microbiol Lett 49:203–206

    CAS  Google Scholar 

  • Schmidt H, Bode R, Birnbaum D (1988b) Lysine degradation in Candida maltosa: occurrence of a novel enzyme, acetyl-CoA: L-lysine N-acetyltransferase. Arch Microbiol 150:215–218

    Article  CAS  Google Scholar 

  • Schnackerz KD, Andersen G, Dobritzsch D, Piškur J (2008) Degradation of pyrimidines in Saccharomyces kluyveri: transamination of beta-alanine. Nucleosides Nucleotides Nucleic Acids 27:794–799

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Shaila MS, Rao GR (1996) Purification and characterization of assimilatory nitrite reductase from Candida utilis. Biochem J 317:147–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw AJ, Lam FH, Hamilton M, Consiglio A, MacEwen K, Brevnova EE, Greenhagen E, LaTouf WG, South CR, van Dijken H, Stephanopoulos G (2016) Metabolic engineering of microbial competitive advantage for industrial fermentation processes. Science 353:583–586

    Article  CAS  PubMed  Google Scholar 

  • Shen XX, Zhou X, Kominek J, Kurtzman CP, Hittinger CT, Rokas A (2016) Reconstructing the backbone of the Saccharomycotina yeast phylogeny using genome-scale data. G3 6:3927–3939

    Article  PubMed  PubMed Central  Google Scholar 

  • Shen XX, Opulente DA, Kominek J, Zhou X, Steenwyk JL, Buh KV, Haase MAB, Wisecaver JH, Wang M, Doering DT, Boudouris JT, Schneider RM, Langdon QK, Ohkuma M, Endoh R, Takashima M, Manabe RI, Čadež N, Libkind D, Rosa CA, DeVirgilio J, Hulfachor AB, Groenewald M, Kurtzman CP, Hittinger CT, Rokas A (2018) Tempo and mode of genome evolution in the budding yeast subphylum. Cell 175:1533–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shepherd A, Piper PW (2010) The Fps1p aquaglyceroporin facilitates the use of small aliphatic amides as a nitrogen source by amidase-expressing yeasts. FEMS Yeast Res 10:527–534

    CAS  PubMed  Google Scholar 

  • Shiraishi K, Oku M, Kawaguchi K, Uchida D, Yurimoto H, Sakai Y (2015) Yeast nitrogen utilization in the phyllosphere during plant lifespan under regulation of autophagy. Sci Rep 5:9719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinclair DA, Dawes IW (1995) Genetics of the synthesis of serine from glycine and the utilization of glycine as sole nitrogen source by Saccharomyces cerevisiae. Genetics 140:1213–1222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinclair K, Warner JP, Bonthron DT (1994) The ASP1 gene of Saccharomyces cerevisiae, encoding the intracellular isozyme of L-asparaginase. Gene 144:37–43

    Article  CAS  PubMed  Google Scholar 

  • Sinclair DA, Hong SP, Dawes IW (1996) Specific induction by glycine of the gene for the P-subunit of glycine decarboxylase from Saccharomyces cerevisiae. Mol Microbiol 19:611–623

    Article  CAS  PubMed  Google Scholar 

  • Solis-Escalante D, Kuijpers NG, Bongaerts N, Bolat I, Bosman L, Pronk JT, Daran JM, Daran-Lapujade P (2013) amdSYM, a new dominant recyclable marker cassette for Saccharomyces cerevisiae. FEMS Yeast Res 13:126–139

    Article  CAS  PubMed  Google Scholar 

  • Suh SO, Marshall CJ, McHugh JV, Blackwell M (2003) Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts. Mol Ecol 12:3137–3145

    Article  PubMed  Google Scholar 

  • Suh SO, McHugh JV, Pollock DD, Blackwell M (2005) The beetle gut: a hyperdiverse source of novel yeasts. Mycol Res 109:261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumrada RA, Cooper TG (1982a) Urea carboxylase and allophanate hydrolase are components of a multifunctional protein in yeast. J Biol Chem 257:9119–9127

    CAS  PubMed  Google Scholar 

  • Sumrada RA, Cooper TG (1982b) Isolation of the CAR1 gene from Saccharomyces cerevisiae and analysis of its expression. Mol Cell Biol 2:1514–1523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sumrada RA, Cooper TG (1984) Nucleotide sequence of the Saccharomyces cerevisiae arginase gene (CAR1) and its transcription under various physiological conditions. J Bacteriol 160:1078–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Truong HN, Meyer C, Daniel-Vedele F (1991) Characteristics of Nicotiana tabacum nitrate reductase protein produced in Saccharomyces cerevisiae. Biochem J 278:393–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tur SS, Lerch K (1988) Unprecedented lysyloxidase activity of Pichia pastoris benzylamine oxidase. FEBS Lett 238:74–76

    Article  CAS  PubMed  Google Scholar 

  • Urrestarazu A, Vissers S, Iraqui I, Grenson M (1998) Phenylalanine- and tyrosine-auxotrophic mutants of Saccharomyces cerevisiae impaired in transamination. Mol Gen Genet 257:230–237

    Article  CAS  PubMed  Google Scholar 

  • van der Walt JP (1962) Utilization of ethylamine by yeasts. Antonie Van Leeuwenhoek 28:91–96

    Article  PubMed  Google Scholar 

  • van Dijken JP, Bos P (1981) Utilization of amines by yeasts. Arch Microbiol 128:320–324

    Article  PubMed  Google Scholar 

  • Verleur N, Elgersma Y, Van Roermund CW, Tabak HF, Wanders RJ (1997) Cytosolic aspartate aminotransferase encoded by the AAT2 gene is targeted to the peroxisomes in oleate-grown Saccharomyces cerevisiae. Eur J Biochem 247:972–980

    Article  CAS  PubMed  Google Scholar 

  • Vigliotta G, Di Giacomo M, Carata E, Massardo DR, Tredici SM, Silvestro D, Paolino M, Pontieri P, Del Giudice L, Parente D, Alifano P (2007) Nitrite metabolism in Debaryomyces hansenii TOB-Y7, a yeast strain involved in tobacco fermentation. Appl Microbiol Biotechnol 75:633–645

    Article  CAS  PubMed  Google Scholar 

  • Villas-Bôas SG, Åkesson M, Nielsen J (2005) Biosynthesis of glyoxylate from glycine in Saccharomyces cerevisiae. FEMS Yeast Res 5:703–709

    Article  PubMed  CAS  Google Scholar 

  • Wang SS, Brandriss MC (1986) Proline utilization in Saccharomyces cerevisiae: analysis of the cloned PUT1 gene. Mol Cell Biol 6:2638–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SS, Brandriss MC (1987) Proline utilization in Saccharomyces cerevisiae: sequence, regulation, and mitochondrial localization of the PUT1 gene product. Mol Cell Biol 7:4431–4440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, van Etten HD (1992) Cloning and properties of a cyanide hydratase gene from the phytopathogenic fungus Gloeocercospora sorghi. Biochem Biophys Res Commun 187:1048–1054

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Zheng G, Wang S, Zhang D, Zhou L (2011) Biodegradation of aniline by Candida tropicalis AN1 isolated from aerobic granular sludge. J Environ Sci 23:2063–2068

    Article  CAS  Google Scholar 

  • White WH, Skatrud PL, Xue Z, Toyn JH (2003) Specialization of function among aldehyde dehydrogenases: the ALD2 and ALD3 genes are required for β-alanine biosynthesis in Saccharomyces cerevisiae. Genetics 163:69–77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whitfield D, Large PJ (1986) Enzymes metabolizing dimethylamine, trimethylamine and trimethylamine N-oxide in the yeast Sporopachydermia cereana grown on amines as sole nitrogen source. FEMS Microbiol Lett 35:99–105

    Article  CAS  Google Scholar 

  • Whitfield D, Large PJ (1987) Assimilatory reduction of trimethylamine N-oxide in the yeast Sporopachydermia cereana. Appl Microbiol Biotechnol 26:277–282

    Article  CAS  Google Scholar 

  • Whitney PA, Cooper TG (1972) Urea carboxylase and allophanate hydrolase. Two components of adenosine triphosphate:urea amido-lyase in Saccharomyces cerevisiae. J Biol Chem 247:1349–1353

    CAS  PubMed  Google Scholar 

  • Wong S, Wolfe KH (2005) Birth of a metabolic gene cluster in yeast by adaptive gene relocation. Nat Genet 37:777–782

    Article  CAS  PubMed  Google Scholar 

  • Wong KH, Hynes MJ, Davis MA (2008) Recent advances in nitrogen regulation: a comparison between Saccharomyces cerevisiae and filamentous fungi. Eukaryot Cell 7:917–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woolfolk SW, Inglis GD (2004) Microorganisms associated with field-collected Chrysoperla rufilabris (Neuroptera: Chrysopidae) adults with emphasis on yeast symbionts. Biol Control 29:155–168

    Article  Google Scholar 

  • Yoo HS, Cooper TG (1991) Sequences of two adjacent genes, one (DAL2) encoding allantoicase and another (DCG1) sensitive to nitrogen-catabolite repression in Saccharomyces cerevisiae. Gene 104:55–62

    Article  CAS  PubMed  Google Scholar 

  • Yoo HS, Genbauffe FS, Cooper TG (1985) Identification of the ureidoglycolate hydrolase gene in the DAL gene cluster of Saccharomyces cerevisiae. Mol Cell Biol 5:2279–2288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yurimoto H, Hasegawa T, Sakai Y, Kato N (2000) Physiological role of the D-amino acid oxidase gene, DAO1, in carbon and nitrogen metabolism in the methylotrophic yeast Candida boidinii. Yeast 16:1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Yurimoto H, Hasegawa T, Sakai Y, Kato N (2001) Characterization and high-level production of D-amino acid oxidase in Candida boidinii. Biosci Biotechnol Biochem 65:627–633

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Suh SO, Blackwell M (2003) Microorganisms in the gut of beetles: evidence from molecular cloning. J Invertebr Pathol 84:226–233

    Article  CAS  PubMed  Google Scholar 

  • Zwart KB, Overmans FH, Harder W (1983a) The role of peroxisomes in the metabolism of D-alanine in the yeast Candida utilis. FEMS Microbiol Lett 19:225–231

    CAS  Google Scholar 

  • Zwart KB, Veenhuis M, Harder W (1983b) Significance of yeast peroxisomes in the metabolism of choline and ethanolamine. Antonie Van Leeuwenhoek 49:369–385

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Professor Terrance G. Cooper (University of Tennessee) and Professor Peter J. Large (University of Hull) for commenting on the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Linder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Linder, T. (2019). Nitrogen Assimilation Pathways in Budding Yeasts. In: Sibirny, A. (eds) Non-conventional Yeasts: from Basic Research to Application. Springer, Cham. https://doi.org/10.1007/978-3-030-21110-3_7

Download citation

Publish with us

Policies and ethics