Skip to main content

Glutathione Metabolism in Yeasts and Construction of the Advanced Producers of This Tripeptide

  • Chapter
  • First Online:
Book cover Non-conventional Yeasts: from Basic Research to Application

Abstract

Glutathione is the most abundant non-protein thiol compound of the most living organisms able to protect cells from nutritional, environmental, and oxidative stresses. Due to the antioxidative properties, glutathione is widely used as an active ingredient of drugs, food, and cosmetic products. Microbial synthesis using yeasts is currently the most common method for the commercial production of glutathione. Construction of glutathione overproducers in yeasts by metabolic engineering approaches and optimization of the technology for its production has potential to satisfy the increasing industrial demand in this tripeptide. This review summarizes the current knowledge of physiological functions and practical applications of glutathione as well as illustrates strategies for its efficient production. The potential of the methylotrophic yeast Ogataea polymorpha as a glutathione producer is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achkor H, Diaz M, Fernandez RM, Biosca JA, Pare’s X, Martinez MC (2003) Enhanced formaldehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis. Plant Physiol 132:2248–2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfafara CG, Kanda A, Shioi T, Shimizu H, Shioya S, Suga K (1992a) Effect of amino acids on glutathione production by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 36:538–540

    Article  CAS  Google Scholar 

  • Alfafara CG, Miura K, Shimizu H, Shioya S, Suga K (1992b) Cysteine addition strategy for maximum glutathione production in fed-batch culture of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 37:141–146

    Article  CAS  Google Scholar 

  • Allocati N, Masulli M, Di Ilio C, Federici L (2018) Glutathione transferases: substrates, inhibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis 7, 8

    Google Scholar 

  • Bachhawat AK, Kaur A (2017) Glutathione degradation. Antioxid Redox Signal 27:1200–1216

    Article  CAS  PubMed  Google Scholar 

  • Bachhawat A, Gangul D, Kaur J, Kasturia N, Thakur N, Kaur H, Kumar A, Yadav A (2009) Glutathione production in yeast. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Dordrecht, pp 259–280

    Chapter  Google Scholar 

  • Bachhawat AK, Thakur A, Kaur J, Zulkifli M (2013) Glutathione transporters. Biochim Biophys Acta 1830:3154–3164

    Article  CAS  PubMed  Google Scholar 

  • Baek M, Choy JH, Choi SJ (2012) Montmorillonite intercalated with glutathione for antioxidant delivery: synthesis, characterization, and bioavailability evaluation. Int J Pharm 425:29–34

    Article  CAS  PubMed  Google Scholar 

  • Bansal A, Simon MC (2018) Glutathione metabolism in cancer progression and treatment resistance. J Cel Biol 217:2291–2298

    Article  CAS  Google Scholar 

  • Blazhenko OV, Zimmermann M, Kang HA, Bartosz G, Penninckx MJ, Ubiyvovk VM, Sibirny AA (2006) Accumulation of cadmium ions in the methylotrophic yeast Hansenula polymorpha. BioMetals 19:593–599

    Article  CAS  PubMed  Google Scholar 

  • Bourbouloux A, Shahi P, Chakladar A, Delrot S, Bachhawat AK (2000) Hgt1p, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. J Biol Chem 275:13259–13265

    Article  CAS  PubMed  Google Scholar 

  • Brandsma D, Kerklaan BM, Diéras V, Altintas S, Anders CK, Ballester MA, Gelderblom H, Soetekouw PMMB, Gladdines W, Lonnqvist F et al (2014) Phase 1/2a study of glutathione pegylated liposomal doxorubicin (2b3-101) in patients with brain metastases (BM) from solid tumors or recurrent high grade gliomas (HGG). Ann Oncol 16:v159–v167

    Google Scholar 

  • Buonocore D, Grosini M, Giardina S, Michelotti A, Carrabetta M, Seneci A, Marzatico F (2016) Bioavailability study of an innovative orobuccal formulation of glutathione. Oxid Med Cell Longev 2:1–7

    Article  CAS  Google Scholar 

  • Cagnac O, Bourbouloux A, Chakrabarty D, Zhang MY, Delrot S (2004) AtOPT6 transports glutathione derivatives and is induced by primisulfuron. Plant Physiol. 135:1378–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrese G, Morgan B, Riemer J (2017) Mitochondrial glutathione: regulation and functions. Antioxid Redox Signal 27(15):1162–1177

    Article  CAS  PubMed  Google Scholar 

  • Carretero J, Obrador E, Anasagasti MJ, Martin JJ, Vidal-Vanaclocha F, Estrela JM (1999) Growth-associated changes in glutathione content correlate with liver metastatic activity of B16 melanoma cells. Clin Exp Metastasis 17:567–574

    Article  CAS  PubMed  Google Scholar 

  • Cha J, Park J, Jeon B, Lee Y, Cho Y (2004) Optimal fermentation conditions for enhanced glutathione production by Saccharomyces cerevisiae FF-8. J Microbiol 42:51–55

    CAS  PubMed  Google Scholar 

  • Chakravarthi S, Jessop CE, Bulleid NJ (2006) The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. Embo Rep 7:271–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Bunt C, Wen J (2015) Mucoadhesive polymers-based film as a carrier system for sublingual delivery of glutathione. J Pharm Pharmacol 67:26–34

    Article  CAS  PubMed  Google Scholar 

  • Chiang HS, Maric M (2011) Lysosomal thiol reductase negatively regulates autophagy by altering glutathione synthesis and oxidation. Free Radic Biol Med. 51:688–699

    Article  CAS  PubMed  Google Scholar 

  • Chu D (2013) Combination containing complex nucleoside, glutathione and yeast extract and application of combination in aspects of alleviating hangover and protecting liver. China Patent Application CN102886042 (A)

    Google Scholar 

  • Collinson EJ, Grant CM (2003) Role of yeast glutaredoxins as glutathione S-transferases. J Biol Chem 278:22492–22497

    Article  CAS  PubMed  Google Scholar 

  • Conticello C, Martinetti D, Adamo L, Buccheri S, Giuffrida R, Parrinello N, Lombardo L, Anastasi G, Amato G, Cavalli M et al (2012) Disulfiram, an old drug with new potential therapeutic uses for human hematological malignancies. Int J Cancer 131:2197–2203

    Article  CAS  PubMed  Google Scholar 

  • Corso CR, Acco A (2018) Glutathione system in animal model of solid tumors: from regulation to therapeutic target. Crit Rev Oncol Hematol 128:43–57

    Article  PubMed  Google Scholar 

  • Couto N, Malys N, Gaskell SJ, Barber J (2013) Partition and turnover of glutathione reductase from Saccharomyces cerevisiae: a proteomic approach. J Proteome Res 12:2885–2894

    Article  CAS  PubMed  Google Scholar 

  • Couto N, Schooling SR, Dutcher JR, Barber J (2015) Proteome profiles of outer membrane vesicles and extracellular matrix of Pseudomonas aeruginosa biofilms. J Proteome Res 14:4207–4222

    Article  CAS  PubMed  Google Scholar 

  • Couto N, Wood J, Barber J (2016) The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med 95:27–42

    Article  CAS  PubMed  Google Scholar 

  • Crum A (2011) Nutritional or therapeutic compositions and methods to increase bodily glutathione levels. United States Reissued Patent USRE42645 (E)

    Google Scholar 

  • Dalton TP, Chen Y, Schneider SN, Nebert DW, Shertzer HG (2004) Genetically altered mice to evaluate glutathione homeostasis in health and disease. Free Rad Biol Med 37:1511–1526

    Article  CAS  PubMed  Google Scholar 

  • Delaunay-Moisan A, Ponsero A, Toledano MB (2017) Reexamining the function of glutathione in oxidative protein folding and secretion. Antioxid Redox Signal 27:1178–1199

    Article  CAS  PubMed  Google Scholar 

  • Dhaoui M, Auchere F, Blaiseau PL, Lesuisse E, Landoulsi A, Camadro JM, Haguenauer-Tsapis R, Belgareh-Touze N (2011) Gex1 is a yeast glutathione exchanger that interferes with pH and redox homeostasis. Mol Biol Cell 22:2054–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dmytruk K, Kurylenko O, Ruchala J, Ishchuk O, Sibirny A (2016) Development of the thermotolerant methylotrophic yeast Hansenula polymorpha as efficient ethanol producer. In: Satyanarayana T, Kunze G (eds) Yeast diversity in human welfare. Springer, Singapore, pp 257–282

    Google Scholar 

  • Dmytruk K, Kurylenko O, Ruchala J, Abbas C, Sibirny A (2017) Genetic improvement of conventional and nonconventional yeasts for the production of first- and second-generation ethanol. In: Sibirny A (ed) Biotechnology of yeasts and filamentous fungi. Springer, Cham, pp 1–38

    Google Scholar 

  • Dong SC, Sha HH, Xu XY, Hu TM, Lou R, Li H, Wu JZ, Dan C, Feng J (2018) Glutathione S-transferase π: a potential role in antitumor therapy. Drug Des Devel Ther 12:3535–3547

    Article  PubMed  PubMed Central  Google Scholar 

  • Dormer UH, Westwater J, McLaren NF, Kent NA, Mellor J, Jamieson DJ (2000) Cadmium-inducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory network. J Biol Chem 275:32611–32616

    Article  CAS  PubMed  Google Scholar 

  • Elskens MT, Jaspers CJ, Penninckx MJ (1991) Glutathione as an endogenous sulphur source in the yeast Saccharomyces cerevisiae. J Gen Microbiol 137:637–644

    Article  CAS  PubMed  Google Scholar 

  • Fei L, Wang Y, Chen S (2009) Improved glutathione production by gene expression in Pichia pastoris. Bioprocess Biosyst Eng 32:729–735

    Article  CAS  PubMed  Google Scholar 

  • Forman HJ, Zhang H, Rinna A (2009) Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol Asp Med 30:1–12

    Article  CAS  Google Scholar 

  • Fraternale A, Brundu S, Magnani M (2017) Glutathione and glutathione derivatives in immunotherapy. Biological Chemistry 398:261–275

    Article  CAS  PubMed  Google Scholar 

  • Fu D (2015) Yeast glutathione nutrition preparation. China Patent CN103750344 (B)

    Google Scholar 

  • Fujiwara S, Kawazoe T, Ohnishi K, Kitagawa T, Popa C, Valls M, Genin S, Nakamura K, Kuramitsu Y, Tanaka N (2016) RipAY, a plant pathogen effector protein, exhibits robust γ -glutamyl cyclotransferase activity when stimulated by eukaryotic thioredoxins. J Biol Chem 291:6813–6830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaillard PJ, Kerklaan BM, Aftimos P, Altintas S, Jager A, Gladdines W, Lonnqvist F, Soetekouw P, Verheul H, Awada A et al (2014) Abstract CT216: Phase I dose escalating study of 2B3-101, glutathione PEGylated liposomal doxorubicin, in patients with solid tumors and brain metastases or recurrent malignant glioma. Cancer Res 74:CT216

    Google Scholar 

  • Ganguli D, Kumar C, Bachhawat AK (2007) The alternative pathway of glutathione degradation is mediated by a novel protein complex involving three new genes in Saccharomyces cerevisiae. Genetics 175:1137–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcerá A, Barreto L, Piedrafita L, Tamarit J, Herrero E (2006) Saccharomyces cerevisiae cells have three Omega class glutathione S-transferases acting as 1-Cys thiol transferases. Biochem J 398:187–196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaucher C, Boudier A, Bonetti J, Clarot I, Leroy P, Parent M (2018) Glutathione: antioxidant properties dedicated to nanotechnologies. Antioxidants 7:62

    Article  CAS  PubMed Central  Google Scholar 

  • Ge S, Zhu T, Li Y (2012) Expression of bacterial GshF in Pichia pastoris for glutathione production. Appl Environ Microbiol 78:5435–5439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge C, Spånning E, Glaser E, Wieslander Å (2014) Import determinants of organelle-specific and dual targeting peptides of mitochondria and chloroplasts in Arabidopsis thaliana. Mol Plant 7:121–136

    Article  CAS  PubMed  Google Scholar 

  • Genin S, Denny TP (2012) Pathogenomics of the Ralstonia solanacearum species complex. Annu Rev Phytopathol 50:67–89

    Article  CAS  PubMed  Google Scholar 

  • Gipp JJ, Chang C, Mulcahy RT (1992) Cloning and nucleotide sequence of a full-length cDNA for human liver γ -glutamylcysteine synthetase. Biochem Biophys Res Comm 185:29–35

    Article  CAS  PubMed  Google Scholar 

  • Gipp JJ, Bailey HH, Mulcahy RT (1995) Cloning and sequence of the cDNA for the light subunit of human liver γ -glutamylcysteine synthetase and relative mRNA levels for heavy and light subunits in human normal tissues. Biochem Biophys Res Comm 206:584–589

    Article  CAS  PubMed  Google Scholar 

  • Gogos A, Shapiro L (2002) Large conformational changes in the catalytic cycle of glutathione synthase. Structure 10:1669–1676

    Article  CAS  PubMed  Google Scholar 

  • Gopal S, Borovok I, Ofer A, Yanku M, Cohen G, Goebel W, Aharonowitz Y (2005) A multidomain fusion protein in Listeria monocytogenes catalyzes the two primary activities for glutathione biosynthesis. J Bacteriol 187:3839–3847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabek-Lejko D, Kurylenko O, Sibirny V, Ubiyvovk V, Penninckx M, Sibirny A (2011) Alcoholic fermentation by wild-type Hansenula polymorpha and Saccharomyces cerevisiae versus recombinant strains with an elevated level of intracellular glutathione. J Ind Microbiol Biotechnol 38:1853–1859

    Article  CAS  PubMed  Google Scholar 

  • Grant CM, MacIver FH, Dawes IW (1997) Glutathione synthetase is dispensable for growth under both normal and oxidative stress conditions in the yeast Saccharomyces cerevisiae due to an accumulation of the dipeptide γ-glutamylcysteine. Mol Biol Cell 8:1699–1707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith OW, Meister A (1979) Translocation of intracellular glutathione to membrane-bound gamma-glutamyl transpeptidase as a discrete step in the gamma-glutamyl cycle: glutathionuria after inhibition of transpeptidase. PNAS USA. 76:268–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulshan K, Rovinsky SA, Coleman ST, Moye-Rowley WS (2005) Oxidant-specific folding of Yap1p regulates both transcriptional activation and nuclear localization. J Biol Chem 280:40524–40533

    Article  CAS  PubMed  Google Scholar 

  • Gupta P, Wright SE, Kim SH, Srivastava SK (2014) Phenethyl isothiocyanate: a comprehensive review of anticancer mechanisms. Biochim Biophys Acta 1846:405–424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gushima H, Miya T, Murata K, Kimura A (1983) Construction of glutathione producing strains of Escherichiacoli B by recombinant DNA techniques. Appl Biochem Biotechnol 5:43–52

    CAS  Google Scholar 

  • Hagen TM, Wierzbicka GT, Sillau AH, Bowman BB, Jones DP (1990) Bioavailability of dietary glutathione: effect on plasma concentration. Am J Physiol 259:G524–G529

    CAS  PubMed  Google Scholar 

  • Hara KY, Kiriyama K, Inagaki A, Nakayama H, Kondo A (2012) Improvement of glutathione production by metabolic engineering the sulfate assimilation pathway of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 94:1313–1319

    Article  CAS  PubMed  Google Scholar 

  • Hartner FS, Glieder A (2006) Regulation of methanol utilisation pathway genes in yeasts. Microb Cell Fact 5:39–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hassan MQ, Hadi RA, Al-Rawi ZS, Padron VA, Stohs SJ (2001) The glutathione defense system in the pathogenesis of rheumatoid arthritis. J Appl Toxicol 21:69–73

    Article  CAS  PubMed  Google Scholar 

  • Hatem E, El Banna N, Huang ME (2017) Multifaceted roles of glutathione and glutathione-based systems in carcinogenesis and anticancer drug resistance. Antioxid Redox Signal 27:1217–1234

    Article  CAS  PubMed  Google Scholar 

  • Hersh T (1999) Intra-oral antioxidant preparations. United States Patent Application US5906811 (A)

    Google Scholar 

  • Horiguchi H, Yurimoto H, Kato N, Sakai Y (2001) Antioxidant system within yeast peroxisome. Biochemical and physiological characterization of CbPmp20 in the methylotrophic yeast Candida boidinii. J Biol Chem 276:14279–14288

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Anderson ME, Meister A (1993a) Amino acid sequence and function of the light subunit of rat kidney γ-glutamylcysteine synthetase. J Biol Chem 268:20578–20583

    CAS  PubMed  Google Scholar 

  • Huang C, Chang L, Anderson ME, Meister A (1993b) Catalytic and regulatory properties of the heavy subunit of rat kidney γ -glutamylcysteine synthetase. J Biol Chem 268:19675–19680

    CAS  PubMed  Google Scholar 

  • Huang ZZ, Chen C, Zeng Z, Yang H, Oh J, Chen L, Lu SC (2001) Mechanism and significance of increased glutathione level in human hepatocellular carcinoma and liver regeneration. FASEB J 15:19–21

    Article  PubMed  Google Scholar 

  • Iantomasi T, Favilli F, Marraccini P, Magaldi T, Bruni P, Vincenzini MT (1997) Glutathione transport system in human small intestine epithelial cells. Biochim Biophys Acta 1330:274–283

    Article  CAS  PubMed  Google Scholar 

  • Janowiak BE, Griffith OW (2005) Glutathione synthesis in Streptococcus agalactiae: One protein accounts for γ-glutamylcysteine synthetase and glutathione synthetase activities. J Biol Chem 280:11829–11839

    Article  CAS  PubMed  Google Scholar 

  • Jez JM, Cahoon RE, Chen S (2004) Arabidopsis thaliana glutamate-cysteine ligase: functional properties, kinetic mechanism, and regulation of activity. J Biol Chem 279:33463–33470

    Article  CAS  PubMed  Google Scholar 

  • Jones DP, Mody VC Jr, Carlson JL, Lynn MJ, Sternberg P Jr (2002) Redox analysis of human plasma allows separation of pro-oxidant events of aging from decline in antioxidant defenses. Free Radic Biol Med 33:1290–1300

    Article  CAS  PubMed  Google Scholar 

  • Kannan R, Mittur A, Bao Y, Tsuruo T, Kaplowitz N (1999) GSH transport in immortalized mouse brain endothelial cells: evidence for apical localization of a sodium-dependent GSH transporter. J Neurochem 73:390–399

    Article  CAS  PubMed  Google Scholar 

  • Karplus PA, Schulz GE (1987) Refined structure of glutathione reductase at 1.54 Å resolution. J Mol Biol 195:701–729

    Article  CAS  PubMed  Google Scholar 

  • Kaszycki P, Tyszka M, Malec P, Kołoczek H (2001) Formaldehyde and methanol biodegradation with the methylotrophic yeast Hansenula polymorpha. An application to real wastewater treatment. Biodegradation 12:169–177

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Kumar C, Junot C, Toledano MB, Bachhawat AK (2009) Dug1p Is a Cys-Gly peptidase of the gamma-glutamyl cycle of Saccharomyces cerevisiae and represents a novel family of Cys-Gly peptidases. J Biol Chem 284:14493–14502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur H, Ganguli D, Bachhawat AK (2012) Glutathione degradation by the alternative pathway (DUG pathway) in Saccharomyces cerevisiae is initiated by (Dug2p-Dug3p)2 complex, a novel glutamine amidotransferase (GATase) enzyme acting on glutathione. J Biol Chem 287:8920–8931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur A, Gautam R, Srivastava R, Chandel R, Kumar A, Karthikeyan S, Bachhawat AK (2017) The structure of ChaC2: an enzyme for slow turnover of cytosolic glutathione. J Biol Chem 292:638–651

    Article  CAS  PubMed  Google Scholar 

  • Kelly BS, Antholine WE, Griffith OW (2002) Escherichia coli gamma-glutamylcysteine synthetase. Two active site metal ions affect substrate and inhibitor binding. J Biol Chem 277:50–58

    Article  CAS  PubMed  Google Scholar 

  • Kim OC, Suwannarangsee S, Oh DB, Kim S, Seo JW, Kim CH, Kang HA, Kim JY, Kwon O (2013) Transcriptome analysis of xylose metabolism in the thermotolerant methylotrophic yeast Hansenula polymorpha. Bioprocess Biosyst Eng 36:1509–1518

    Article  CAS  PubMed  Google Scholar 

  • Kiriyama K, Hara KY, Kondo A (2012) Extracellular glutathione fermentation using engineered Saccharomyces cerevisiae expressing a novel glutathione exporter. Appl Microbiol Biotechnol 96:1021–1027

    Article  CAS  PubMed  Google Scholar 

  • Koh S, Wiles AM, Sharp JS, Naider FR, Becker JM, Stacey G (2002) An oligopeptide transporter gene family in Arabidopsis. Plant Physiol 128:21–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kritzinger EC, Bauer FF, du Toit WJ (2012) Role of glutathione in winemaking: a review. J Agric Food Chem 61:269–277

    Article  PubMed  CAS  Google Scholar 

  • Kumar C, Sharma R, Bachhawat AK (2003) Utilization of glutathione as an exogenous sulfur source is independent of gamma-glutamyl transpeptidase in the yeast Saccharomyces cerevisiae: evidence for an alternative glutathione degradation pathway. FEMS Microbiol Lett 219:187–194

    Article  CAS  PubMed  Google Scholar 

  • Lagrain B, Thewissen BG, Brijs K, Delcour JA (2007) Impact of redox agents on the extractability of gluten proteins during bread making. J Agric Food Chem 55:5320–5325

    Article  CAS  PubMed  Google Scholar 

  • Lai J, Lee S, Hsieh C, Hwang C, Liao C (2008) Saccharomyces cerevisiae strains for hyper-producing glutathione and γ-glutamylcysteine and processes of use. United States Patent 7371557

    Google Scholar 

  • Lash H, Jones DP (1983) Transport of glutathione by renal basal-lateral membrane vesicles. Biochem Biophys Res Commun 112:55–60

    Article  CAS  PubMed  Google Scholar 

  • Lebo R, Kredich N (1978) Inactivation of human γ-glutamylcysteine synthetase by cystamine. Demonstration and quantification of enzyme ligand complexes. J Biol Chem 253:2615–2523

    CAS  PubMed  Google Scholar 

  • Lee TA, Jorgensen P, Bognar AL, Peyraud C, Thomas D, Tyers M (2010) Dissection of combinatorial control by the Met4 transcriptional complex. Mol Biol Cell 21:456–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HG, Koo SH, Lim DY, Kim ES, Yoon HS, Lee JS, Kim GH (2015) Method for the production of food packaging film with enhanced glutathione stability. Republic of Korea Patent KR101492471 (B1)

    Google Scholar 

  • Liang G, Mo Y, Du G (2010) Optimization of sodium dedecyl sulfate (SDS) addition coupled with adenosine triphosphate (ATP) regeneration for glutathione overproduction in high density cultivation of Candida utilis. Enzym Microb Technol 46(6):526–533

    Article  CAS  Google Scholar 

  • Li ZS, Szczypka M, Lu YP, Thiele DJ, Rea PA (1996) The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J Biol Chem 271:6509–6517

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wei G, Chen J (2004) Glutathione: a review on biotechnological production. Appl Microbiol Biotechnol 66:233–242

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Hugenholtz J, Sybesma W, Abee T, Molenaar D (2005) Using Lactococcus lactis for glutathione overproduction. Appl Microbiol Biotechnol 67:83–90

    Article  CAS  PubMed  Google Scholar 

  • Li H, Guo A, Wang H (2008) Mechanisms of oxidative browning of wine. Food Chem 108:1–13

    Article  CAS  Google Scholar 

  • Li Z, Ye Q, Li W, Zhang S (2014) Method for producing glutathione by fermentation of recombinant Escherichia coli. China Patent CN102586369

    Google Scholar 

  • Liang G, Du G, Chen J (2008) Enhanced glutathione production by using low-pH stress coupled with cysteine addition in the treatment of high cell density culture of Candida utilis. Lett appl microbial 46:507–512

    Article  CAS  Google Scholar 

  • Lieber CS (2002) S-Adenosyl-L-methionine and alcoholic liver disease in animal models: implications for early intervention in human beings. Alcohol 27:173–177

    Article  CAS  PubMed  Google Scholar 

  • Liedschulte V, Wachter A, Zhigang A, Rausch T (2010) Exploiting plants for glutathione (GSH) production: uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation. Plant Biotechnol J 8:807–820

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Sanchez-Fernandez R, Li ZS, Rea PA (2001) Enhanced multispecificity of arabidopsis vacuolar multidrug resistance-associated protein-type ATP-binding cassette transporter, AtMRP2. J Biol Chem 276:8648–8656

    Article  CAS  PubMed  Google Scholar 

  • Lo M, Ling V, Low C, Wang YZ, Gout PW (2010) Potential use of the anti-inflammatory drug, sulfasalazine, for targeted therapy of pancreatic cancer. Curr Oncol 17:9–16

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz E, Schmacht M, Senz M (2016) Evaluation of cysteine ethyl ester as efficient inducer for glutathione overproduction in Saccharomyces spp. Enzyme Microb Technol 93–94:122–131

    Article  PubMed  CAS  Google Scholar 

  • Lu SC (2009) Regulation of glutathione synthesis. Mol Asp Med 30:42–59

    Article  CAS  Google Scholar 

  • Luo M, Boudier A, Clarot I, Maincent P, Schneider R, Leroy P (2016) Gold nanoparticles grafted by reduced glutathione with thiol function preservation. Colloid Interface Sci Commun 14:8–12

    Article  CAS  Google Scholar 

  • Lyu C (2016) Rice noodles capable of nourishing faces and protecting skins and preparation method of rice noodles. China Patent Application CN105410629 (A)

    Google Scholar 

  • Maeda H, Hori S, Ohizumi H, Segawa T, Kakehi Y, Ogawa O, Kakizuka A (2004) Effective treatment of advanced solid tumors by the combination of arsenic trioxide and L-buthionine-sulfoximine. Cell Death Differ 11:737–746

    Article  CAS  PubMed  Google Scholar 

  • Maher P (2005) The effects of stress and aging on glutathione metabolism. Ageing Res Rev 4:288–314

    Article  CAS  PubMed  Google Scholar 

  • Mandracchia D, Denora N, Franco M, Pitarresi G, Giammona G, Trapani G (2011) New biodegradable hydrogels based on inulin and α,β-polyaspartylhydrazide designed for colonic drug delivery: In Vitro release of glutathione and oxytocin. J Biomater Sci Polym Ed 22:313–328

    Article  CAS  PubMed  Google Scholar 

  • Martinoia E, Grill E, Tommasini R, Kreuz K, Amrhein N (1993) ATP-dependent glutathione S-conjugate ‘export’ pump in the vacuolar membrane of plants. Nature 364:247–249

    Article  CAS  Google Scholar 

  • Marz U (2014) Yeasts, yeast extracts, autolysates and related products: the global market, https://www.bccresearch.com/market-research/chemicals/yeast-yeast-extracts-autolysates-products-chm053b.html

  • Maughan SC, Pasternak M, Cairns N, Kiddle G, Brach T, Jarvis R, Haas F, Nieuwland J, Lim B, Muller C, Salcedo-Sora E, Kruse C, Orsel M, Hell R, Miller AJ, Bray P, Foyer CH, Murray JA, Meyer AJ, Cobbett CS (2010) Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. PNAS USA 107:2331–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehdi K, Penninckx MJ (1997) An important role for glutathione and γ-glutamyl-transpeptidase in the supply of growth requirements during nitrogen starvation of the yeast Saccharomyces cerevisiae. Microbiology 143:1885–1889

    Article  CAS  PubMed  Google Scholar 

  • Meister A (1988) Glutathione. In: Arias IM, Jakoby WB, Popper H, Schachter D, Shafritz DA (eds) The liver: biology and pathobiology, 2nd edn. Raven Press, New York, pp 401–417

    Google Scholar 

  • Meister A, Anderson ME (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  CAS  PubMed  Google Scholar 

  • Mezzetti F, De Vero L, Giudici P (2014) Evolved wine strains with enhanced glutathione production obtained by an evolution-based strategy. FEMS Yeast Res 14(6):977–987

    Article  CAS  PubMed  Google Scholar 

  • Mittl PR, Schulz GE (1994) Structure of glutathione reductase from Escherichia coli at 1.86 Å resolution: comparison with the enzyme from human erythrocytes. Protein Sci 3:799–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naji-Tabasi S, Razavi SMA, Mehditabar H (2017) Fabrication of basil seed gum nanoparticles as a novel oral delivery system of glutathione. Carbohydr Polym 157:1703–1713

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa T, Kaji N, Tokuriki M (2016) Use of yeast extract including glutathione as melanin production inhibitor. Taiwan Patent Application TW201620396 (A)

    Google Scholar 

  • Narang VS, Pauletti GM, Gout PW, Buckley DJ, Buckley AR (2007) Sulfasalazine-induced reduction of glutathione levels in breast cancer cells: enhancement of growth-inhibitory activity of Doxorubicin. Chemotherapy 53:210–217

    Article  CAS  PubMed  Google Scholar 

  • Nie W, Wei G, Du G, Li Y, Chen J (2005) Enhanced intracellular glutathione synthesis and excretion capability of Candida utilis by using a low pH-stress strategy. Lett Appl Microbiol 40:378–384

    Article  CAS  PubMed  Google Scholar 

  • Noguti J, Barbisan LF, Cesar A, Dias Seabra C, Choueri RB, Ribeiro DA (2012) Review: in vivo models for measuring placental glutathione-S-transferase (GST-P7-7) levels: a suitable biomarker for understanding cancer pathogenesis. In Vivo 26:647–650

    CAS  PubMed  Google Scholar 

  • Oliveira P, Martins NM, Santos M, Couto NA, Wright PC, Tamagnini P (2015) The Anabaena sp. PCC 7120 exoproteome: taking a peek outside the box. Life 5:130–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ono B, Shirahige Y, Nanjoh A, Andou N, Ohue H, Ishino-Arao Y (1988) Cysteine biosynthesis in Saccharomyces cerevisiae: mutation that confers cystathionine β-synthase deficiency. J Bacteriol 170:5883–5889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oppenheimer L, Wellner VP, Griffith OW, Meister A (1979) Glutathione synthetase. Purification from rat kidney and mapping of the substrate binding sites. J Biol Chem 254:5184–5190

    CAS  PubMed  Google Scholar 

  • Ortiz-Julien A (2012) Method for preventing defective ageing of white wines. United States Patent US8268372 (B2)

    Google Scholar 

  • Orumets K (2012) Molecular mechanisms controlling intracellular glutathione levels in baker’s yeast and a random mutagenized glutathione over-accumulating isolate. PhD Thesis, Tallinn university of technology, Tallinn, Estonia

    Google Scholar 

  • Orumets K, Kevvai K, Nisamedtinov I, Tamm T, Paalme T (2012) YAP1 over-expression in Saccharomyces cerevisiae enhances glutathione accumulation at its biosynthesis and substrate availability levels. Biotechnol J 7:566–568

    Article  CAS  PubMed  Google Scholar 

  • Outten CE, Culotta VC (2004) Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase. J Biol Chem 279:7785–7791

    Article  CAS  PubMed  Google Scholar 

  • Oz HS, Chen TS, Nagasawa H (2007) Comparative efficacies of 2 cysteine prodrugs and a glutathione delivery agent in a colitis model. Transl Res J Lab Clin Med 150:122–129

    Article  CAS  Google Scholar 

  • Patzschke A, Steiger MG, Holz C, Lang C, Mattanovich D, Sauer M (2015) Enhanced glutathione production by evolutionary engineering of Saccharomyces cerevisiae strains. Biotechnol J 10:1719–1726

    Article  CAS  PubMed  Google Scholar 

  • Penninckx MJ, Elskens MT (1993) Metabolism and functions of glutathione in micro-organisms. Adv Microb Physiol 34:239–301

    Article  CAS  PubMed  Google Scholar 

  • Penninckx MJ, Jaspers CJ (1985) Molecular and kinetic properties of purified γ-glutamyl transpeptidase from yeast (Saccharomyces cerevisiae). Phytochemistry 24:1913–1918

    Article  CAS  Google Scholar 

  • Penninckx MJ, Jaspers C, Wiame JM (1980) Glutathione metabolism in relation to the amino-acid permeation systems of the yeast Saccharomyces cerevisiae. Occurrence of γ-glutamyltranspeptidase: its regulation and the effects of permeation mutations on the enzyme cellular level. Eur J Biochem 104:119–123

    Article  CAS  PubMed  Google Scholar 

  • Perricone C, De Carolis C, Perricone R (2009) Glutathione: a key player in autoimmunity. Autoimmun Rev 8:697–701

    Article  CAS  PubMed  Google Scholar 

  • Perrone GG, Grant CM, Dawes IW (2005) Genetic and environmental factors influencing glutathione homeostasis in Saccharomyces cerevisiae. Mol Biol Cell 16:218–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pittman MS, Robinson HC, Poole RK (2005) A bacterial glutathione transporter (Escherichia coli CydDC) exports reductant to the periplasm. J Biol Chem 280:32254–32261

    Article  CAS  PubMed  Google Scholar 

  • Pocsi N, Prade RA, Penninckx MJ (2004) Glutathione, altruistic metabolite in fungi. Adv In Microb Physiol 49:2–76

    Google Scholar 

  • Qiu Z, Deng Z, Tan H, Zhou S, Cao L (2015) Engineering the robustness of Saccharomyces cerevisiae by introducing bifunctional glutathione synthase gene. J Ind Microbiol Biotechnol 42:537–542

    Article  CAS  PubMed  Google Scholar 

  • Rana S, Dringen R (2007) Gap junction hemichannel-mediated release of glutathione from cultured rat astrocytes. Neurosci Lett 415:45–48

    Article  CAS  PubMed  Google Scholar 

  • Rebbeor JF, Connolly GC, Dumont ME, Ballatori N (1998) ATP-dependent transport of reduced glutathione on YCF1, the yeast orthologue of mammalian multidrug resistance-associated proteins. J Biol Chem 273:33449–33454

    Article  CAS  PubMed  Google Scholar 

  • Rebbeor JF, Connolly GC, Ballatori N (2002) Inhibition of Mrp2- and Ycf1p-mediated transport by reducing agents: evidence for GSH transport on rat Mrp2. Biochim Biophys Acta 1559:171–178

    Article  CAS  PubMed  Google Scholar 

  • Richman PG, Meister A (1975) Regulation of gamma-glutamycysteine synthetase b nonallosteric feedback inhibition by glutathione. J Biol Chem 250:1422–1426

    CAS  PubMed  Google Scholar 

  • Riley R, Haridas S, Wolfe KH, Lopes MR, Hittinger CT, Goker M, Salamov AA, Wisecaver JH, Long TM, Calvey CH et al (2016) Comparative genomics of biotechnologically important yeasts. Proc Natl Acad Sci U S A 113:9882–9887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rip J, Chen L, Hartman R, van den Heuvel A, Reijerkerk A, van Kregten J, van der Boom B, Appeldoorn C, de Boer M, Maussang D et al (2014) Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood-brain barrier in rats. J Drug Target 22:460–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rollini M, Musatti A, Manzoni M (2010) Production of glutathione in extracellular form by Saccharomyces cerevisiae. Process Biochem 45(4):441–445

    Article  CAS  Google Scholar 

  • Rosemeyer MA (1987) The biochemistry of glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and glutathione reductase. Cell Biochem Funct 5:79–95

    Article  CAS  PubMed  Google Scholar 

  • Rosenblat M, Volkova N, Coleman R, Aviram M (2007) Anti-oxidant and anti-atherogenic properties of liposomal glutathione: studies in vitro, and in the atherosclerotic apolipoprotein E-deficient mice. Atherosclerosis 195:61–68

    Article  CAS  Google Scholar 

  • Sadhu MJ, Moresco JJ, Zimmer AD, Yates JR, Rine J (2014) Multiple inputs control sulfur-containing amino acid synthesis in Saccharomyces cerevisiae. Mol Biol Cell 25:1653–1665

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakato K, Tanaka H (1992) Advanced control of glutathione fermentation process. Biotechnol Bioeng 40(8):904–912

    Article  CAS  PubMed  Google Scholar 

  • Salvemini F, Franzé A, Iervolino A, Filosa S, Salzano S, Ursini MV (1999) Enhanced glutathione levels and oxidoresistance mediated by increased glucose-6-phosphate dehydrogenase expression. J Biol Chem 274:2750–2757

    Article  CAS  PubMed  Google Scholar 

  • Saucedo AC, Ambati BK (2016) Eye health supplement. United States Patent Application US20160030502 (A1)

    Google Scholar 

  • Sawers L, Ferguson MJ, Ihrig BR, Young HC, Chakravarty C, Wolf CR, Smith G (2014) Glutathione S-transferase P1 (GSTP1) directly influences platinum drug chemosensitivity in ovarian tumour cell lines. Br J Cancer 111:1150–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmacht M, Lorenz E, Senz M (2017a) Microbial production of glutathione. World J Microbiol 33:106

    Article  CAS  Google Scholar 

  • Schmacht M, Lorenz E, Stahl U, Senz M (2017b) Medium optimization based on yeast’s elemental composition for glutathione production in Saccharomyces cerevisiae. J Biosci Bioeng 123:555–561

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Martini N, Rennenberg H (1992) Reduced glutathione (GSH) transport into cultured tobacco cells. Plant Physiol Biochem 30:29–38

    CAS  Google Scholar 

  • Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911

    Article  CAS  PubMed  Google Scholar 

  • Sechi G, Deledda MG, Bua G, Satta WM, Deiana GA, Pes GM, Rosati G (1996) Reduced intravenous glutathione in the treatment of early Parkinson’s disease. Prog Neuro-Psychopharmacol Biol Psychiatry 20:1159–1170

    Article  CAS  Google Scholar 

  • Seelig GF, Simondsen RP, Meister A (1984) Reversible dissociation of γ -glutamylcysteine synthetase into two subunits. J Biol Chem 259:9345–9347

    CAS  PubMed  Google Scholar 

  • Shang F, Wang Z, Tan T (2008) High-cell-density cultivation for co-production of ergosterol and reduced glutathione by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 77(6):1233–1240

    Article  CAS  PubMed  Google Scholar 

  • Sharma KG, Mason DL, Liu G, Rea PA, Bachhawat AK, Michaelis S (2002) Localization, regulation, and substrate transport properties of Bpt1p, a Saccharomyces cerevisiae MRP-type ABC transporter. Eukaryot Cell 1:391–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohn MJ, Yoo SJ, Oh DB, Kwon O, Lee SY, Sibirny AA, Kang HA (2014) Novel cysteine-centered sulfur metabolic pathway in the thermotolerant methylotrophic yeast Hansenula polymorpha. PLoS One 9:e100725

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soltaninassab SR, Sekhar KR, Meredith MJ, Freeman ML (2000) Multifaceted regulation of γ-glutamylcysteine synthetase. J Cel Physiol 182:163–170

    Article  CAS  Google Scholar 

  • Spector D, Labarre J, Toledano MB (2001) A genetic investigation of the essential role of glutathione mutations in the proline biosynthesis pathway are the only suppressors of glutathione auxotrophy in yeast. J Biol Chem 276:7011–7016

    Article  CAS  PubMed  Google Scholar 

  • Springael J, Penninckx MJ (2003) Nitrogen-source regulation of yeast γ-glutamyl transpeptidase synthesis involves the regulatory network including the GATA zinc-finger factors Gln3, Nil1/Gat1 and Gzf3. Biochem J 371:589–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srikanth CV, Vats P, Bourbouloux A, Delrot S, Bachhawat AK (2005) Multiple cis-regulatory elements and the yeast sulphur regulatory network are required for the regulation of the yeast glutathione transporter, Hgt1p. Curr Genet 47:345–358

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama K, Izawa S, Inoue Y (2000) The Yap1p-dependent induction of glutathione synthesis in heat shock response of Saccharomyces cerevisiae. J Biol Chem 275:15535–15540

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Kumagai H, Tochikura T (1986) Gamma-glutamyltranspeptidase from Escherichia coli K-12: formation and localization. J Bacteriol 168:1332–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki H, Koyanagi T, Izuka S, Onishi A, Kumagai H (2005) The yliA, -B, -C, and –D genes of Escherichia coli K-12 encode a novel glutathione importer with an ATP-binding cassette. J Bacteriol 187:5861–5867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiermann M (2010) Non-surgical method for treating cataracts in mammals including man. United States Patent US7776364 (B2)

    Google Scholar 

  • Thomas D, Surdin-Kerjan Y (1997) Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 61:503–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toledano MB, Huang ME (2017) The unfinished puzzle of glutathione physiological functions, an old molecule that still retains many enigmas. Antioxid Redox Signal 27:1127–1129

    Article  CAS  PubMed  Google Scholar 

  • Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57:145–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapani A, Lopedota A, Franco M, Cioffi N, Ieva E, Garcia-Fuentes M, Alonso MJ (2010) A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptides. Eur J Pharm Biopharm 75:26–32

    Article  CAS  PubMed  Google Scholar 

  • Tsunoda S, Avezov E, Zyryanova A, Konno T, Mendes-Silva L, Melo EP, Harding HP, Ron D (2014) Intact protein folding in the glutathione-depleted endoplasmic reticulum implicates alternative protein thiol reductants. Elife 3:e03421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ubiyvovk VM, Nazarko TY, Stasyk OG, Sohn MJ, Kang HA, Sibirny AA (2002) GSH2, a gene encoding gamma-glutamylcysteine synthetase in the methylotrophic yeast Hansenula polymorpha. FEMS Yeast Res 2:327–332

    CAS  PubMed  Google Scholar 

  • Ubiyvovk VM, Blazhenko OV, Gigot D, Penninckx M, Sibirny AA (2006) Role of gamma-glutamyltranspeptidase in detoxification of xenobiotics in the yeasts Hansenula polymorpha and Saccharomyces cerevisiae. Cell Biol Int 30:665–671

    Article  CAS  PubMed  Google Scholar 

  • Ubiyvovk VM, Ananin VM, Malyshev AY, Kang HA, Sibirny AA (2011a) Optimization of glutathione production in batch and fed-batch cultures by the wild-type and recombinant strains of the methylotrophic yeast Hansenula polymorpha DL-1. BMC Biotechnol 11:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ubiyvovk VM, Blazhenko OV, Zimmermann M, Sohn MJ, Kang HA (2011b) Cloning and functional analysis of the GSH1/MET1 gene complementing cysteine and glutathione auxotrophy of the methylotrophic yeast Hansenula polymorpha. Ukr Biokhim Zh 83:67–81

    CAS  Google Scholar 

  • Ueda Y, Yonemitsu M, Tsubuku T, Sakaguchi M, Miyajima R (2014) Flavor characteristics of glutathione in raw and cooked foodstuffs. Biosci Biotechnol Biochem 61(12):1977–1980

    Article  Google Scholar 

  • Van Der Werf P, Orlowski M, Meister A (1971) Enzymatic conversion of 5-oxo-L-proline (L-pyrrolidone carboxylate) to L-glutamate coupled with cleavage of adenosine triphosphate to adenosine diphosphate, a reaction in the γ -glutamyl cycle. Proc Natl Acad Sci 68:2982–2985

    Article  PubMed  PubMed Central  Google Scholar 

  • Veeravalli K, Boyd D, Iverson BL, Beckwith J, Georgiou G (2011) Laboratory evolution of glutathione biosynthesis reveals natural compensatory pathways. Nat Chem Biol 7:101–105

    Article  CAS  PubMed  Google Scholar 

  • Vergauwen B, De Vos D, Van Beeumen JJ (2006) Characterization of the bifunctional γ-glutamate–cysteine ligase/glutathione synthetase (GshF) of Pasteurella multocida. J Biol Chem 281:4380–4394

    Article  CAS  PubMed  Google Scholar 

  • Verheyen C, Albrecht A, Herrmann J, Strobl M, Jekle M, Becker T (2015) The contribution of glutathione to the destabilizing effect of yeast on wheat dough. Food Chem 173:243–249

    Article  CAS  PubMed  Google Scholar 

  • Verma VV, Gupta R, Goel M (2015) Phylogenetic and evolutionary analysis of functional divergence among Gamma glutamyl transpeptidase (GGT) subfamilies. Biol Direct 10:49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang Z (2014) Whitening cosmetic and preparation method thereof. China Patent Application CN104027293 (A)

    Google Scholar 

  • Wang Z, Tan T, Song J (2007) Effect of amino acids addition and feedback control strategies on the high-cell-density cultivation of Saccharomyces cerevisiae for glutathione production. Bioresour Technol 42:108–111

    Article  CAS  Google Scholar 

  • Wang B, Liang G, Zhou Q, Xie J, Mo Y (2010) Combined amino acids modulation with H2O2 stress for glutathione overproduction in Candida utilis. Afr J Biotechnol 9:5399–5406

    CAS  Google Scholar 

  • Wang M, Sun J, Xue F, Shang F, Wang Z, Tan T (2012) The effect of intracellular amino acids on GSH production by high-cell density cultivation of Saccharomyces cerevisiae. Appl Biochem Biotechnol 168:198–205

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Zhang J, Wu H, Li Z, Ye Q (2015) Heterologous gshF gene expression in various vector systems in Escherichia coli for enhanced glutathione production. J Biotechnol 214:63–68

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Wang C, Wu H, Li Z, Ye Q (2016) Glutathione production by recombinant Escherichia coli expressing bifunctional glutathione synthetase. J Ind Microbiol Biotechnol 43:45–53

    Article  CAS  PubMed  Google Scholar 

  • Wang YR, Branicky N, Noë A, Hekimi S (2018) Superoxide dismutases: dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol 217:1915–1928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe F, Hashizume E, Chan GP, Kamimura A (2014) Skin-whitening and skin-condition-improving effects of topical oxidized glutathione: a double-blind and placebo-controlled clinical trial in healthy women. Clin Cosmet Investig Dermatol:267

    Google Scholar 

  • Wen S, Zhang T, Tan T (2004) Utilization of amino acids to enhance glutathione production in Saccharomyces cerevisiae. Enzym Microb Technol 35(6–7):501–507

    Article  CAS  Google Scholar 

  • Wen S, Zhang T, Tan T (2006) Maximizing production of glutathione by amino acid modulation and high-cell-density fed-batch culture of Saccharomyces cerevisiae. Process Biochem 41:2424–2428

    Article  CAS  Google Scholar 

  • Wen J, Du Y, Li D, Alany R (2013) Development of water-in-oil microemulsions with the potential of prolonged release for oral delivery of L-glutathione. Pharm Dev Technol 18:1424–1429

    Article  CAS  PubMed  Google Scholar 

  • Weschawalit S, Thongthip S, Phutrakool P, Asawanonda P (2017) Glutathione and its antiaging and antimelanogenic effects. Clin Cosmet Investig Dermatol 10:147–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wheeler GL, Trotter EW, Dawes IW, Grant CM (2003) Coupling of the transcriptional regulation of glutathione biosynthesis to the availability of glutathione and methionine via the Met4 and Yap1 transcription factors. J Biol Chem 278:49920–49928

    Article  CAS  PubMed  Google Scholar 

  • Wickham S, West MB, Cook PF, Hanigan MH (2011) Gamma-glutamyl compounds: substrate specificity of gamma-glutamyl transpeptidase enzymes. Anal Biochem 414:208–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiles AM, Cai H, Naider F, Becker JM (2006) Nutrient regulation of oligopeptide transport in Saccharomyces cerevisiae. Microbiology 152:3133–3145

    Article  CAS  PubMed  Google Scholar 

  • Witschi A, Reddy S, Stofer B, Lauterburg BH (1992) The systemic availability of oral glutathione. Eur J Clin Pharmacol 43:667–669

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Fang Y, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. Int J Nutr 134:489–492

    CAS  Google Scholar 

  • Xiao Z, La Fontaine S, Bush AI, Wedd AG (2019) Molecular mechanisms of glutaredoxin enzymes: versatile hubs for thiol-disulfide exchange between protein thiols and glutathione. J Mol Biol 431:158–177

    Article  CAS  PubMed  Google Scholar 

  • Xiong Z, Guo M, Guo Y, Chu J, Zhuang Y, Zhang S (2009) Efficient extraction of intracellular reduced glutathione from fermentation broth of Saccharomyces cerevisiae by ethanol. Bioresour Technol 100:1011–1014

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Zhang L, Chen Y, Cheng W, Guo Y, Wei Y, Liang J, Tan W (2015) Saccharomyces cerevisiae microbial preparation with high yield of glutathione and preparation method thereof. China Patent Application CN104286415 (A)

    Google Scholar 

  • Yamaguchi H, Kato H, Hata Y, Nishioka T, Kimura A, Oda J, Katsube Y (1993) Three-dimensional structure of the glutathione synthetase from Escherichia coli B at 2.0 A resolution. J Mol Biol 229:1083–1100

    Article  CAS  PubMed  Google Scholar 

  • Yan N, Meister A (1990) Amino acid sequence of rat kidney γ-glutamylcysteine synthetase. J Biol Chem 265:1588–1593

    CAS  PubMed  Google Scholar 

  • Yan C, Lee LH, Davis LI (1998) Crm1p mediates regulated nuclear export of a yeast AP-1-like transcription factor. EMBO J 17:7416–7429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye C, Liu Y, Wang Y, Li H, Wang K (2016) Glutathione beautifying yogurt and production method thereof. China Patent Application CN105685226 (A)

    Google Scholar 

  • Yoshida H, Arai S, Hara KY, Yamada R, Ogino C, Fukuda H, Kondo A (2011) Efficient and direct glutathione production from raw starch using engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 89:1417–1422

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zhou CZ (2007) Crystal structure of glutathione reductase Glr1 from the yeast Saccharomyces cerevisiae. Proteins: Struct Funct Bioinf 68:972–979

    Article  CAS  Google Scholar 

  • Yun J, Mullarky E, Lu C, Bosch KN, Kavalier A, Rivera K, Roper J, Chio II, Giannopoulou EG, Rago C, Muley A, Asara JM, Paik J, Elemento O, Chen Z, Pappin DJ, Dow LE, Papadopoulos N, Gross SS, Cantley LC (2015) Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH. Science 350:1391–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yurimoto H, Oku M, Sakai Y (2011) Yeast methylotrophy: metabolism, gene regulation and peroxisome homeostasis. Int J of Microbiol 2011:1–8

    Article  CAS  Google Scholar 

  • Yurkiv M, Kurylenko O, Vasylyshyn R, Dmytruk K, Fickers P, Sibirny A (2018) Gene of the transcriptional activator MET4 is involved in regulation of glutathione biosynthesis in the methylotrophic yeast Ogataea (Hansenula) polymorpha. FEMS Yeast Res 18(2)

    Google Scholar 

  • Zaman GJ, Lankelma J, van Tellingen O, Beijnen J, Dekker H, Paulusma C, Oude Elferink RP, Baas F, Borst P (1995) Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. PNAS USA 92:7690–7694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarka MH, Bridge WJ (2017) Oral administration of γ-glutamylcysteine increases intracellular glutathione levels above homeostasis in a randomised human trial pilot study. Redox Biol 11:631–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zechmann B (2014) Compartment-specific importance of glutathione during abiotic and biotic stress. Front Plant Sci 5:566

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Wen S, Tan T (2007) Optimization of the medium for glutathione production in Saccharomyces cerevisiae. Process Biochem 42:454–458

    Article  CAS  Google Scholar 

  • Zhang J, Quan C, Wang C, Wu H, Li Z, Ye Q (2016) Systematic manipulation of glutathione metabolism in Escherichia coli for improved glutathione production. Microb Cell Factories 15:38

    Article  CAS  Google Scholar 

  • Zhang X, Wu H, Huang B, Li Z, Ye Q (2017) One-pot synthesis of glutathione by a two-enzyme cascade using a thermophilic ATP regeneration system. J Biotechnol 241:163–169

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurylenko, O.O., Dmytruk, K.V., Sibirny, A. (2019). Glutathione Metabolism in Yeasts and Construction of the Advanced Producers of This Tripeptide. In: Sibirny, A. (eds) Non-conventional Yeasts: from Basic Research to Application. Springer, Cham. https://doi.org/10.1007/978-3-030-21110-3_6

Download citation

Publish with us

Policies and ethics