Skip to main content

Effective Technologies for Isolating Yeast Oxido-Reductases of Analytical Importance

  • Chapter
  • First Online:
Non-conventional Yeasts: from Basic Research to Application

Abstract

Microbial enzymes have gained interest for their widespread use in industries and medicine due to their stability, catalytic activity, and low-cost production, compared to plant and animal analogues. Microbial enzymes are capable of degrading toxic chemical compounds of industrial and domestic wastes by degradation or via conversion to nontoxic products. Enzyme technology broadly involves production, isolation, purification, and use of enzymes in various industries (e.g., food, medicine, agriculture, chemicals, pharmacology). The development of simple technologies for obtaining highly purified novel enzymes is an actual task for biotechnology and enzymology. This chapter presents a review of the main achievements in the elaboration of modern techniques for obtaining recombinant and novel enzymes. The results of a series of the authors’ investigations into the development of novel enzymatic approaches, including biosensors, for determination of practically important analytes are summarized. The described methods are related to isolation of highly purified yeast oxido-reductases: alcohol oxidase, flavocytochrome b2, glycerol dehydrogenase, and formaldehyde dehydrogenase. The enzymes were isolated from selected or recombinant yeast cells using the simple and effective technologies developed by the authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali MB, Gonchar M, Gayda G, Paryzhak S, Maaref MA, Jaffrezic-Renault N, Korpan Y (2007) Formaldehyde-sensitive sensor based on recombinant formaldehyde dehydrogenase using capacitance versus voltage measurements. Biosens Bioelectron 22(12):2790–2795

    Article  PubMed  CAS  Google Scholar 

  • Allais JJ, Louktibi A, Baratti J (1983) Oxidation of methanol by the yeast Pichia pastoris. Purification and properties of the formaldehyde dehydrogenase. Agric Biol Chem 47(7):1509–1516

    CAS  Google Scholar 

  • Arias CAD, Marques DAV, Malpiedi LP, Maranhão AQ, Parra DAS, Converti A, Junior AP (2017) Cultivation of Pichia pastoris carrying the scFv anti LDL (-) antibody fragment. Effect of preculture carbon source. Braz J Microbiol 48(3):419–426

    Article  CAS  PubMed  Google Scholar 

  • Avalos J, Nordzieke S, Parra O, Pardo-Medina J, Carmen Limon M (2017) Carotenoid Production by Filamentous Fungi and Yeasts. In: Sibirny A. (eds) Biotechnology of Yeasts and Filamentous Fungi. Springer, Cham pp 225–279

    Chapter  Google Scholar 

  • Baerends RJ, Sulter GJ, Jeffries TW (2002) Molecular characterization of the Hansenula polymorpha FLD1 gene encoding formaldehyde dehydrogenase. Yeast 19:37–42

    Article  CAS  Google Scholar 

  • Baghban R, Farajnia S, Ghasemi Y, Mortazavi M, Zarghami N, Samadi N (2018) New developments in Pichia pastoris expression system, review and update. Curr Pharm Biotechnol 19(6):451–467

    Article  CAS  PubMed  Google Scholar 

  • Bao J, Huang M, Petranovic D, Nielsen J (2018) Balanced trafficking between the ER and the Golgi apparatus increases protein secretion in yeast. AMB Express 8:37. https://doi.org/10.1186/s13568-018-0571-x

    Article  CAS  PubMed  Google Scholar 

  • Barrero JJ, Casler JC, Valero F, Ferrer P, Glick BS (2018) An improved secretion signal enhances the secretion of model proteins from Pichia pastoris. Microb Cell Factories 17:161. https://doi.org/10.1186/s12934-018-1009-5

    Article  CAS  Google Scholar 

  • Bawa Z, Routledge SJ, Jamshad M, Clare M, Sarkar D, Dickerson I, Ganzlin M, Poyner DR, Bill RM (2014) Functional recombinant protein is present in the pre-induction phases of Pichia pastoris cultures when grown in bioreactors, but not shake-flasks. Microb Cell Factories 13(1):127. https://doi.org/10.1186/s12934-014-0127-y

    Article  CAS  Google Scholar 

  • Belda I, Ruiz J, Beisert B, Navascués E, Marquina D, Calderón F, Rauhut D, Benito S, Santos A (2017) Influence of Torulaspora delbrueckii in varietal thiol (3-SH and 4-MSP) release inwine sequential fermentations. Int J Food Microbiol 257:183–191

    Article  CAS  PubMed  Google Scholar 

  • Berg L, Strand TA, Valla S, Brautaset T (2013) Combinatorial mutagenesis and selection to understand and improve yeast promoters. Biomed Res Int 2013:Article ID 926985, 9 pages. https://doi.org/10.1155/2013/926985

    Article  CAS  Google Scholar 

  • Białkowska AM (2016) Strategies for efficient and economical 2,3-butanediol production: new trends in this field. World J Microbiol Biotechnol 32(12):200. https://doi.org/10.1007/s11274-016-2161-x

    Article  CAS  PubMed  Google Scholar 

  • Bollella P, Sharma S, Cass AEG, Antiochia R (2019) Microneedle-based biosensor for minimally-invasive lactate detection. Biosens Bioelectron 123:152–159

    Article  CAS  PubMed  Google Scholar 

  • Boteva R, Visser AJ, Filippi B, Vriend G, Veenhuis M, van der Klei IJ (1999) Conformational transitions accompanying oligomerization of yeast alcohol oxidase, a peroxisomal flavoenzyme. Biochemistry 38(16):5034–5044

    Article  CAS  PubMed  Google Scholar 

  • Bredell H, Smith JJ, Prins WA, Görgens JF, van Zyl WH (2016) Expression of rotavirus VP6 protein: a comparison amongst Escherichia coli, Pichia pastoris and Hansenula polymorpha. FEMS Yeast Research 16 (2) fow001, https://doi.org/10.1093/femsyr/fow001

    Article  PubMed  CAS  Google Scholar 

  • Bringer S, Sprey B, Sahm H (1979) Purification and properties of alcohol oxidase from Poria contigua. Eur J Biochem 101(2):563–570

    Article  CAS  PubMed  Google Scholar 

  • Buckholz RG, Gleeson MA (1991) Yeast systems for the commercial production of heterologous proteins. Biotechnology (NY) 9(11):1067–1072

    Article  CAS  Google Scholar 

  • Chang CH, Hsiung HA, Hong KL, Huang CT (2018) Enhancing the efficiency of the Pichia pastoris AOX1 promoter via the synthetic positive feedback circuit of transcription factor Mxr1. BMC Biotechnol 18(1):81. https://doi.org/10.1186/s12896-018-0492-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman J, Ismail AE, Dinu CZ (2018) Industrial applications of enzymes: recent advances, techniques, and outlooks. Catalysts 8(238):1–26

    CAS  Google Scholar 

  • Chen B, Lee HL, Heng YC, Chua N, Teo WS, Choi WJ, Leong SSJ, Foo JL, Chang MW (2018) Synthetic biology toolkits and applications in Saccharomyces cerevisiae. Biotechnol Adv 36(7):1870–1881

    Article  CAS  PubMed  Google Scholar 

  • Cho S, Kim T, Woo HM, Kim Y, Lee J, Um Y (2015) High production of 2,3-butanediol from biodiesel-derived crude glycerol by metabolically engineered Klebsiella oxytoca M1. Biotechnol Biofuels 8:146. https://doi.org/10.1186/s13068-015-0336-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cregg JM, Barringer KJ, Hessler AY, Madden KR (1985) Pichia pastoris as a host system for transformations. Mol Cell Biol 5(12):3376–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cregg JM, Madden KR, Barringer KJ, Thill GP, Stillman CA (1989) Functional characterization of the two alcohol oxidase genes from the yeast Pichia pastoris. Mol Cell Biol 9(3):1316–1323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curvers S, Brixius P, Klauser T, Thömmes J, Weuster-Botz D, Takors R, Wandrey C (2001) Human chymotrypsinogen B production with Pichia pastoris by integrated development of fermentation and downstream processing. Part 1. Fermentation. Biotechnol Prog 17(3):495–502

    Article  CAS  PubMed  Google Scholar 

  • Dagar K, Pundir CS (2018) Dataset on fabrication of an improved L-lactate biosensor based on lactate oxidase/cMWCNT/CuNPs/PANI modified PG electrode. Data Brief 17:1163–1167

    Article  PubMed  PubMed Central  Google Scholar 

  • Daly R, Hearn MT (2005) Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production: review. J Mol Recognit 18(2):119–138

    Article  CAS  PubMed  Google Scholar 

  • Demkiv OM, SYa P, Krasovs’ka OS, Stasyk OV, Gayda GZ, Sibirny AA, Gonchar MV (2005) Construction of methylotrophic yeast Hansenula polymorpha strains over-producing formaldehyde dehydrogenase. Biopolymers and Cell 21(6):525–530. (in Ukrainian)

    Article  CAS  Google Scholar 

  • Demkiv OM, Paryzhak SY, Gayda GZ, Sibirny VA, Gonchar МV (2007) Formaldehyde dehydrogenase from the recombinant yeast Hansenula polymorpha: іsolation and bioanalytic application. FEMS Yeast Res 7:1153–1159

    Article  CAS  PubMed  Google Scholar 

  • Demkiv O, Smutok O, Paryzhak S, Gayda G, Sultanov Y, Guschin D, Shkil H, Schuhmann W, Gonchar M (2008) Reagentless amperometric formaldehyde-selective biosensors based on the recombinant yeast formaldehyde dehydrogenase. Talanta 76(4):837–846

    Article  CAS  PubMed  Google Scholar 

  • Demkiv OM, Paryzhak SY, Ishchuk OP, Gayda GZ, Gonchar MV (2011) Activities of the enzymes of formaldehyde catabolism in recombinant strains of Hansenula polymorpha. Mirobiology 80(3):307–313

    Article  CAS  Google Scholar 

  • Dijkman WP, de Gonzalo G, Mattevi A, Fraaije MW (2013) Flavoprotein oxidases: classification and applications: review. Appl Microbiol Biotechnol 97(12):5177–5188

    Article  CAS  PubMed  Google Scholar 

  • Dmytruk KV, Smutok OV, Ryabova OB, Gayda GZ, Sibirny VA, Schuhmann W, Gonchar MV, Sibirny AA (2007) Isolation and characterization of mutated alcohol oxidases from the yeast Hansenula polymorpha with decreased affinity toward substrates and their use as selective elements of an amperometric biosensor. BMC Biotechnol 7(7):1–7

    Google Scholar 

  • Dmytruk KV, Kurylenko OO, Ruchala J, Abbas CA, Sibirny AA (2017) Genetic Improvement of Conventional and Nonconventional Yeasts for the Production of First- and Second-Generation Ethanol. In: Sibirny A. (eds) Biotechnology of Yeasts and Filamentous Fungi. Springer, Cham pp 1–38

    Google Scholar 

  • Domínguez A, Fermiñán E, Sánchez M, González FJ, Pérez-Campo FM, García S, Herrero AB, San Vicente A, Cabello J, Prado M, Iglesias FJ, Choupina A, Burguillo FJ, Fernández-Lago L, López MC (1998) Non-conventional yeasts as hosts for heterologous protein production. Int Microbiol 1(2):131–142

    Google Scholar 

  • Eggeling L, Sahm H (1980) Direct enzymatic assay for Alcohol Oxidase, Alcohol Dehydrogenase, and Formaldehyde Dehydrogenase in colonies of Hansenula polymorpha. Appl Environ Microbiol 39(1):268–269

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ekas H, Deaner M, Alper HS (2019) Recent advancements in fungal-derived fuel and chemical production and commercialization. Curr Opin Chem Biol 57:1–9

    Article  CAS  Google Scholar 

  • Engleder M, Horvat M, Emmerstorfer-Augustin A, Wriessnegger T, Gabriel S, Strohmeier G, Weber H, Müller M, Kaluzna I, Mink D, Schürmann M, Pichler H (2018) Recombinant expression, purification and biochemical characterization of kievitone hydratase from Nectria haematococca. PLoS One 13(2):e0192653. https://doi.org/10.1371/journal.pone.0192653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes FJ, López-Estepa M, Querol-García J, Vega MC (2016) Production of protein complexes in non-methylotrophic and methylotrophic Yeasts: nonmethylotrophic and methylotrophic Yeasts. Adv Exp Med Biol 896:137–153

    Google Scholar 

  • Fletcher E, Krivoruchko A, Nielsen J (2016) Industrial systems biology and its impact on synthetic biology of yeast cell factories. Biotechnol Bioeng 113(6):1164–1170

    Article  CAS  PubMed  Google Scholar 

  • Gadda G (2008) Hydride transfer made easy in the reaction of alcohol oxidation catalyzed by flavin-dependent oxidases: review. Biochemist 47(52):13745–13753

    Article  CAS  Google Scholar 

  • Gaida GZ, Stel'mashchuk SY, Smutok OV, Gonchar MV (2003) A new method of visualization of the enzymatic activity of flavocytochrome b2 in electrophoretograms. Appl Biochem Microbiol 39(2):221–223

    Article  CAS  Google Scholar 

  • Gartner G, Kopperschlager G (1984) Purification and Properties of Glycerol Dehydrogenase from Candida valida. Microbiology 130: 3225–3233

    Article  Google Scholar 

  • Gayda G, Demkiv O, Gonchar M, Paryzhak S, Schuhmann W (2008a) Recombinant formaldehyde dehydrogenase and gene-engineered methylotrophic yeasts as bioanalitycal instruments for assay of toxic formaldehyde. In: Evangelista V et al (eds) Algal toxins: nature, occurrence, effect and detection, NATO science for peace and security series A: Chemistry and biology. Springer, Dordrecht, pp 311–333

    Chapter  Google Scholar 

  • Gayda G, Paryzhak S, Demkiv O, Ksheminska H, Gonchar M (2008b) Formaldehyde reductase from formaldehyde-resistant gene-engineered methylotrophic yeast Hansenula polymorpha: isolation and characterization: 12th International Congress on Yeast, Kyiv, Ukraine. August 11–15, p 304

    Google Scholar 

  • Gayda G, Pavlishko H, Stasyuk N, Ivash M, Bilek M, Broda D, Gonchar M (2013a) Application of recombinant glycerol dehydrogenase for glycerol assay in wines. 5 th Polish-Ukrainian Weigl conference on Microbiology. Chernivtsi, Ukraine May 23–25, p 72

    Google Scholar 

  • Gayda G, Stasyuk N, Demkiv O, Klepach H, Broda D, Sibirny A, Gonchar M (2013b) New enzymatic methods for wine assay. International conference Biocatalysis-2013: fundamentals and applications. Moscow, Russia, July 2–5, pp 71–72

    Google Scholar 

  • Gayda G, Demkiv O, Klepach H, Gonchar M, Levy-Halaf R, Wolf D, Nisnevitch M (2015) Formaldehyde: detection and biodegradation (Chapter 6). In: Patton A (ed) Formaldehyde: synthesis, applications and potential health effects. Nova Science Publishers, Inc., New York, pp 117–142. ISBN: 978-1-63482-412-5

    Google Scholar 

  • Gayda GZ, Demkiv OM, Stasyuk NYe, Serkiz RYa, Lootsik MD, Errachid A, Gonchar MV, Nisnevitch M (2019) Metallic nanoparticles obtained via “green” synthesis as a platform for biosensor construction. Appl Sci 9:720. https://doi.org/10.3390/app9040720

    Article  Google Scholar 

  • Gellissen G, Kunze G, Gaillardin C, Cregg JM, Berardi E, Veenhuis M, van der Klei I (2005) New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica – a comparison. EMS Yeast Res 5(11):1079–1096

    Article  CAS  Google Scholar 

  • Gerpen JV (2005) Biodiesel processing and production. Fuel Proces Technol 86 (10): 1097–1107

    Article  CAS  Google Scholar 

  • Gonchar MV, Ksheminska GP, Hladarevska NM, Sibirny AA (1990) Catalase-minus mutants of methylotrophic yeast Hansenula polymorpha impaired in regulation of alcohol oxidase synthesis. In: Lachowicz TM (Ed) Genetics of Respiratory Enzymes in Yeasts. Wroclaw University Press, Wroclaw, Poland, pp. 222–228

    Google Scholar 

  • Gonchar MV, Maidan MM, Pavlishko HM, Sibirny AA (2001) A New Oxidase-Peroxidase Kit for Ethanol Assays in Alcoholic Beverages. Food technol. Biotechnol 39(1):37–42

    Google Scholar 

  • Gonchar M, Maidan M, Korpan Y, Sibirny V, Kotylak Z, Sibirny A (2002) Metabolically engineered methylotrophic yeast cells and enzymes as sensor biorecognition elements. FEMS Yeast Res 2:307–314

    Article  CAS  PubMed  Google Scholar 

  • Gonchar M, Smutok O, Os’mak H (2009) Flavocytochrome b2-based enzymatic composition, method and kit for L-lactate. Patent Application PCT/US2008/069637 Publ.WO/2009/009656: http://www.wipo.int/pctdb/en/wo.jsp?WO=2009009656

  • Gonchar M, Smutok O, Karkovska M, Stasyuk N, Gayda G (2017) Yeast-based biosensors for clinical diagnostics and food control. In: "Biotechnology of Yeasts and Filamentous Fungi" (Ed. A.A. Sibirny). Springer, P. 392–400

    Google Scholar 

  • Goold HD, Kroukamp H, Williams TC, Paulsen IT, Varela C, Pretorius IS (2017) Yeast's balancing act between ethanol and glycerol production in low-alcohol wines. Microb Biotechnol 10(2):264–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goriushkina TB, Orlova AP, Smutok OV, Gonchar MV, Soldatkin AP, Dzyadevych SV (2009) Application of L-lactate-cytochrome c-oxidoreductase for development of amperometric biosensor for L -lactate determination. Biopolymers and Cell 25(3):194–202

    Article  CAS  Google Scholar 

  • Goriushkina TB, Shkotova LV, Gayda GZ, Klepach HM, Gonchar MV, Soldatkin AP, Dziyadevych SV (2010) Amperometric biosensor based on glycerol oxidase for glycerol determination. Sensor Actuat B Chem 144:361–367

    Article  CAS  Google Scholar 

  • Goswami P, Chinnadayyala SS, Chakraborty M, Kumar AK, Kakoti A (2013) An overview on alcohol oxidases and their potential applications: review. Appl Microbiol Biotechnol 97(10):4259–4275

    Article  CAS  PubMed  Google Scholar 

  • Grewal N, Parveen Z, Large A, Perry C, Connock M (2000) Gastropod mollusc aliphatic alcohol oxidase: subcellular localisation and properties. Comp Biochem Physiol B: Biochem Mol Biol 125(4):543–554

    Article  CAS  Google Scholar 

  • Griesemer M, Young C, Robinson AS, Petzold L (2014) BiP clustering facilitates protein folding in the endoplasmic reticulum. PLoS Comput Biol 10(7):e1003675. https://doi.org/10.1371/journal.pcbi.1003675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunkel K, van Dijk R, Veenhuis M, van der Klei IJ (2004) Routing of Hansenula polymorpha alcohol oxidase: an alternative peroxisomal protein-sorting machinery. Mol Biol Cell 15(3):1347–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gvozdev AR, Tukhvatullin IA, Gvozdev RI (2012) Quinone-dependent alcohol dehydrogenases and FAD-dependent alcohol oxidases: review. Biochem Mosc 77(8):843–856

    Article  CAS  Google Scholar 

  • Hartner FS, Glieder A (2006) Regulation of methanol utilisation pathway genes in yeasts. Microb Cell Factories 5(39):1–21

    Google Scholar 

  • Hemmerich J, Adelantado N, Barrigón JM, Ponte X, Hörmann A, Ferrer P, Kensy F, Valero F (2014) Comprehensive clone screening and evaluation of fed-batch strategies in a microbioreactor and lab scale stirred tank bioreactor system: application on Pichia pastoris producing Rhizopus oryzae lipase. Microb Cell Factories 13(1):36. https://doi.org/10.1186/1475-2859-13-36

    Article  CAS  Google Scholar 

  • Hernández-Ortega A, Ferreira P, Martínez AT (2012) Fungal aryl-alcohol oxidase: a peroxide-producing flavoenzyme involved in lignin degradation: review. Appl Microbiol Biotechnol 93(4):1395–1410

    Article  PubMed  CAS  Google Scholar 

  • Feed enzymes market. http://www.marketsandmarkets.com/market-reports/feed-enzyme-market-1157.html. Accessed on 19 Feb 2019

  • Industrial Enzymes Market. http://www.marketsandmarkets.com/Market-Reports/industrial-enzymes-market-237327836.html. Accessed on 19 Feb 2019

  • Pharmaion. India Industrial Enzymes Market Forecast and Opportunities, 2020 http://www.pharmaion.com/report/india-industrial-enzymes-market-forecast-and-opportunities-2020/10.html. Accessed on 19 Feb 2019

  • Sigma products. https://www.sigmaaldrich.com/catalog/product/sigma

  • Huang M, Wang G, Qin J, Petranovic D, Nielsen J (2018a) Engineering the protein secretory pathway of Saccharomyces cerevisiae enables improved protein production. Proc Natl Acad Sci U S A 115(47):E11025–E11032

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Joensson HN, Nielsen J (2018b) High-throughput microfluidics for the screening of yeast libraries. Methods Mol Biol 1671:307–317

    Article  CAS  PubMed  Google Scholar 

  • Idiris A, Tohda H, Kumagai H, Takegawa K (2010) Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 86(2):403–417

    Article  CAS  PubMed  Google Scholar 

  • Isobe K, Takahashi T, Ogawa J, Kataoka M, Shimizu S (2009) Production and characterization of alcohol oxidase from Penicillium purpurescens AIU 063. J Biosci Bioeng 107(2):108–112

    Article  CAS  PubMed  Google Scholar 

  • Janssen FW, Ruelius HW (1968) Alcohol oxidase, a flavoprotein from several Basidiomycetes species. Crystallization by fractional precipitation with polyethylene glycol. Biochim Biophys Acta 151(2):330–342

    Article  CAS  PubMed  Google Scholar 

  • Jullessen D, David F, Pfleger B, Nielsen J (2015) Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnol Adv 33(7):1395–1402

    Article  CAS  Google Scholar 

  • Juturu V, Wu JC (2018) Heterologous protein expression in Pichia pastoris: latest research progress and applications. Chembiochem 19(1):7–21

    Article  CAS  PubMed  Google Scholar 

  • Karkovska M, Smutok O, Stasyuk N, Gonchar M (2015) L-lactate-selective microbial sensor based on flavocytochrome b2-enriched yeast cells using recombinant and nanotechnology approaches. Talanta 144:1195–1200

    Article  CAS  PubMed  Google Scholar 

  • Karkovska МІ, Stasyuk NYe, Gayda GZ, Smutok OV, Gonchar MV (2017) Nanomaterials in construction of biosensors of biomedical purposes. In: Stoika R (Ed) Multifunctional nanomaterials for biology and medicine: molecular design, synthesis, and application. pp. 165–177 (in Ukrainian)

    Google Scholar 

  • Kato N (1990) Formaldehyde dehydrogenase from methylotrophic yeasts. Methods Enzymol 188:455–459

    Google Scholar 

  • Kim H, Yoo SJ, Kang HA (2015) Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res 15(1):1–16

    Article  PubMed  CAS  Google Scholar 

  • Kim JW, Kim J, Seo SO, Kim KH, Jin YS, Seo JH (2016) Enhanced production of 2,3-butanediol by engineered Saccharomyces cerevisiae through fine-tuning of pyruvate decarboxylase and NADH oxidase activities. Biotechno Biofuels 9:265. https://doi.org/10.1186/s13068-016-0677-9

    Article  CAS  Google Scholar 

  • Koch C, Neumann P, Valerius O, Feussner I, Ficner R (2016) Crystal structure of alcohol oxidase from Pichia pastoris. PLoS One 11(2):e0149846. https://doi.org/10.1371/journal.pone.0149846. eCollection

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo T, Morikawa Y, Hayashi N (2008) Purification and characterization of alcohol oxidase from Paecilomyces variotii isolated as a formaldehyde-resistant fungus. Appl Microbiol Biotechnol 77(5):995–1002

    Article  CAS  PubMed  Google Scholar 

  • Krasovska OS, Babiak LIa Nazarko TY, Stasyk OG, Danysh TV, Gayda GZ, Stasyk OV, Gonchar MV, Sybirny АА (2006) Construction of yeast Hansenula polymorpha overproducing amine oxidase as bioselective element of sensors for biogenic amines. In: El’skaya AV, Pokhodenko VD (eds) Investigations on sensor systems and technologies, vol 1. IMBG of NAS of Ukraine, Kyiv, pp 141–148

    Google Scholar 

  • Krasovska OS, Stasyk OG, Nahorny VO, Stasyk OV, Granovski N, Kordium VA, Vozianov OF, Sibirny AA (2007) Glucose-induced production of recombinant proteins in Hansenula polymorpha mutants deficient in catabolite repression. Biotechnol Bioeng 97(4):858–870

    Article  CAS  PubMed  Google Scholar 

  • Krivoruchko A, Siewers V, Nielsen J (2011) Opportunities for yeast metabolic engineering: lessons from synthetic biology. Biotechnol J 6(3):262–276

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Park S (2018) Potential and limitations of Klebsiella pneumoniae as a microbial cell factory utilizing glycerol as the carbon source. Biotechnol Adv 36(1):150–167

    Article  CAS  PubMed  Google Scholar 

  • Leferink NG, Heuts DP, Fraaije MW, van Berkel WJ (2008) The growing VAO flavoprotein family: review. Arch Biochem Biophys 474(2):292–301

    Article  CAS  PubMed  Google Scholar 

  • Li M, Li M, Wu J, Liu X, Lin J, Wei D, Chen H (2010). Enhanced production of dihydroxyacetone from glycerol by overexpression of glycerol dehydrogenase in an alcohol dehydrogenase-deficient mutant of Gluconobacter oxydans. Bioresour Technol 101 (21): 8294-8299

    Article  CAS  PubMed  Google Scholar 

  • Liu W-C, Zhu P (2018) Demonstration-scale high-cell-density fermentation of Pichia pastoris. Recombinant Glycoprotein Production – 2018 Methods and Protocols Part of the Methods in Molecular Biology book series. MIMB 1674:109–116

    Google Scholar 

  • Liu C, Yang X, Yao Y, Huang W, Sun W, Ma Y (2014) Diverse expression levels of two codon-optimized genes that encode human papilloma virus type 16 major protein L1 in Hansenula polymorpha. Biotechnol Lett 36(5):937–945

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Wu S, Li Z (2018) Recent advances in enzymatic oxidation of alcohols: review. Curr Opin Chem Biol 43:77–86

    Article  PubMed  CAS  Google Scholar 

  • Löbs AK, Schwartz C, Wheeldon I (2017) Genome and metabolic engineering in non-conventional yeasts: current advances and applications. Synth Syst Biotechnol 2(3):198–207

    Article  PubMed  PubMed Central  Google Scholar 

  • Love KR, Dalvie NC, Love JC (2018) The yeast stands alone: the future of protein biologic production. Curr Opin Biotechnol 53:50–58

    Article  CAS  PubMed  Google Scholar 

  • Lusta KA, Leonovitch OA, Tolstorukov II, Rabinovich YM (2000) Constitutive biosynthesis and localization of alcohol oxidase in the ethanol-insensitive catabolite repression mutant ecr1 of the yeast Pichia methanolica. Biochem Mosc 65(5):604–608

    Google Scholar 

  • Lv M, Liu Y, Geng J, Kou X, Xin Z, Yang D (2018) Engineering nanomaterials-based biosensors for food safety detection. Biosens Bioelectron 106:122–128

    Article  CAS  PubMed  Google Scholar 

  • Mack M, Wannemacher M, Hobl B, Pietschmann P, Hock B (2009) Comparison of two expression platforms in respect to protein yield and quality: Pichia pastoris versus Pichia angusta. Protein Expr Purif 66(2):165–171

    Article  CAS  PubMed  Google Scholar 

  • Mahadevan A, Fernando S (2016) An improved glycerol biosensor with an Au-FeS-NAD-glycerol-dehydrogenase anode. Biosens Bioelectron 92:417–424

    Article  PubMed  CAS  Google Scholar 

  • Mallinder P, Pritchard A, Moir A (1992) Cloning and characterization of a gene from Bacillus stearothermophilus var. non-diastaticus encoding a glycerol dehydrogenase. Gene 110 (1): 9–16

    Article  CAS  PubMed  Google Scholar 

  • Mangkorn N, Kanokratana P, Roongsawang N, Laobuthee A, Laosiripojana N, Champreda V (2019) Synthesis and characterization of Ogataea thermomethanolica alcohol oxidase immobilized on barium ferrite magnetic microparticles. J Biosci Bioeng 127(3):265–272

    Article  CAS  PubMed  Google Scholar 

  • Mattanovich D, Sauer M, Gasser B (2014) Yeast biotechnology: teaching the old dog new tricks. Microb Cell Factories 13(1):34. https://doi.org/10.1186/1475-2859-13-34

    Article  CAS  Google Scholar 

  • Mincey T, Tayrien G, Mildvan AS, Abeles RH (1980) Presence of a flavin semiquinone in methanol oxidase. Proc Natl Acad Sci U S A 77(12):7099–7101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Müller S, Sandal T, Kamp-Hansen P, Dalbøge H (1998) Comparison of expression systems in the yeasts Saccharomyces cerevisiae, Hansenula polymorpha, Klyveromyces lactis, Schizosaccharomyces pombe and Yarrowia lipolytica. Cloning of two novel promoters from Yarrowia lipolytica. Yeast 14(14):1267–1283

    Article  PubMed  Google Scholar 

  • Nakamura Y, Nishi T, Noguchi R, Ito Y, Watanabe T, Nishiyama T, Aikawa S, Hasunuma T, Ishii J, Okubo Y, Kondo A (2018) A stable, autonomously replicating plasmid vector containing Pichia pastoris Centromeric DNA. Appl Environ Microbiol 84(15):e02882–e02817. https://doi.org/10.1128/AEM.02882-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen H, Nevoigt E (2009) Engineering of Saccharomyces cerevisiae for the production of dihydroxyacetone (DHA) from sugars: a proof of concept. Metab Eng 11: 335–346

    Article  CAS  PubMed  Google Scholar 

  • Nguyen QT, Romero E, Dijkman WP, de Vasconcellos SP, Binda C, Mattevi A, Fraaije MW (2018) Structure-based engineering of Phanerochaete chrysosporium alcohol oxidase for enhanced oxidative power toward glycerol. Biochemistry 57(43):6209–6218

    Article  CAS  PubMed  Google Scholar 

  • Nieuwoudt HH, Prior BA, Pretorius S, Bauer FF (2002) Glycerol in South African table wines: an assessment of its relationship to wine quality. Afr J Enol Vitic 23(1):22–30

    CAS  Google Scholar 

  • Nikitina O, Shleev S, Gayda G, Demkiv O, Gonchar M, Gorton L, Csöregi E, Nistor M (2007) Bi-enzyme biosensor based on NAD+- and glutathione-dependent recombinant formaldehyde dehydrogenase and diaphorase for formaldehyde assay. Sensors Actuators B 125:1–9

    Article  CAS  Google Scholar 

  • Nikolelis DP, Nikoleli GP (2016) Biosensors for security and bioterrorism applications. Springer Int Publi, Switzerland ISBN 978-3-319-28926-7

    Google Scholar 

  • Nora LC, Westmann CA, Martins-Santana L, Alves LF, Monteiro LMO, Guazzaroni ME, Silva-Rocha R (2019) The art of vector engineering: towards the construction of next-generation genetic tools. Microb Biotechnol 12(1):125–147

    Article  CAS  PubMed  Google Scholar 

  • Oh BR, Lee SM, Heo SY, Seo JW, Kim CH (2018) Efficient production of 1,3-propanediol from crude glycerol by repeated fed-batch fermentation strategy of a lactate and 2,3-butanediol deficient mutant of Klebsiella pneumoniae. Microb Cell Factories 17(1):92. https://doi.org/10.1186/s12934-018-0921-z

    Article  CAS  Google Scholar 

  • Owczarek B, Gerszberg A, Hnatuszko-Konka K (2019) A Brief Reminder of Systems of Production and Chromatography-Based Recovery of Recombinant Protein Biopharmaceuticals. Biomed Res Int 2019:4216060. doi: 10.1155/2019/4216060. eCollection 2019

    Article  CAS  Google Scholar 

  • Ozimek P, Veenhuis M, van der Klei IJ (2005) Alcohol oxidase: a complex peroxisomal, oligomeric flavoprotein. FEMS Yeast Res 5(11):975–983

    Article  CAS  PubMed  Google Scholar 

  • Panadare D, Rathod KV (2018) Extraction and purification of polyphenol oxidase: a review. Biocatal Agric Biotechnol 14:431–437

    Article  Google Scholar 

  • Passoth V (2017) Lipids of Yeasts and Filamentous Fungi and Their Importance for Biotechnology. In: Sibirny A. (eds) Biotechnology of Yeasts and Filamentous Fungi. Springer, Cham pp 149–204

    Chapter  Google Scholar 

  • Patel RN, Hou CN, Derelanko P (1983) Microbial oxidation of methanol: purification and properties of formaldehyde dehydrogenase from a Pichia sp. NRRL-Y-11328. Arch Biochem Biophys 221(1):135–142

    Article  CAS  PubMed  Google Scholar 

  • Pavlishko HM, Ryabinina OV, Zhilyakova TA, Sakharov IYu, Gerzhikova VG, Gonchar MV (2005) Oxidase-peroxidase method of ethanol assay in fermented musts and wine products. Appl Biochem Microbiol 41 (6): 604–609

    Article  CAS  Google Scholar 

  • Peña DA, Gasser B, Zanghellini J, Steiger MG, Mattanovich D (2018) Metabolic engineering of Pichia pastoris. Metab Eng 50:2–15

    Article  PubMed  CAS  Google Scholar 

  • Pickl M, Fuchs M, Glueck SM, Faber K (2015) The substrate tolerance of alcohol oxidases: review. Appl Microbiol Biotechnol 99(16):6617–6642

    Article  CAS  PubMed  Google Scholar 

  • Pobre KFR, Poet GJ, Hendershot LM (2018) The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: getting by with a little help from ERdj friends. J Biol Chem 294(6):2098–2108

    Article  PubMed  Google Scholar 

  • Porro D, Branduardi P (2017) Production of Organic Acids by Yeasts and Filamentous Fungi. In: Sibirny A. (eds) Biotechnology of Yeasts and Filamentous Fungi. Springer, Cham pp 205–223

    Chapter  Google Scholar 

  • Portela RMC, Vogl T, Ebner K, Oliveira R, Glieder A (2018) Pichia pastoris alcohol oxidase 1 (AOX1) core promoter engineering by high resolution systematic mutagenesis. Biotechnol J 13(3):e1700340. https://doi.org/10.1002/biot.201700340

    Article  CAS  Google Scholar 

  • Rahman MS, Xu CC, Ma K, Nanda M, Qin W (2017) High production of 2,3-butanediol by a mutant strain of the newly isolated Klebsiella pneumoniae SRP2 with increased tolerance towards glycerol. Int J Biol Sci 13(3):308–318

    Article  CAS  PubMed  Google Scholar 

  • Rajamanickam V, Metzger K, Schmid C, Spadiut O (2017) A novel bi-directional promoter system allows tunable recombinant protein production in Pichia pastoris. Microb Cell Factories 16:152. https://doi.org/10.1186/s12934-017-0768-8

    Article  CAS  Google Scholar 

  • Rankine BC, Bridson DA (1974) Glycerol in australian wines and factors influencing its formation. http://www.ajevonline.org/content/ajev/22/1/6.full.pdf

  • Rassaei L, Olthuis W, Tsujimura S, Sudhölter EJ, van den Berg A (2014) Lactate biosensors: current status and outlook. Anal Bioanal Chem 406(1):123–137

    Article  PubMed  CAS  Google Scholar 

  • Rathee K, Dhull V, Dhull R, Singh S (2016) Biosensors based on electrochemical lactate detection: a comprehensive review. Biochem Biophys Rep 11(5):35–54

    Google Scholar 

  • Rebello S, Abraham A, Madhavan A, Sindhu R, Binod P, Karthika Bahuleyan A, Aneesh EM, Pandey A (2018) Non-conventional yeast cell factories for sustainable bioprocesses. FEMS Microbiol Lett 365(21). https://doi.org/10.1093/femsle/fny222

  • Reiser J, Glumoff V, Kälin M, Ochsner U (1990) Transfer and expression of heterologous genes in yeasts other than Saccharomyces cerevisiae. Adv Biochem Eng Biotechnol 43:75–102

    CAS  PubMed  Google Scholar 

  • Remize F, Cambon B, Barnavon L, Dequin S (2003) Glycerol formation during wine fermentation is mainly linked to Gpd1p and is only partially controlled by the HOG pathway. Yeast 20: 1243–1253

    Article  CAS  PubMed  Google Scholar 

  • Reyes De Corcuera JI, Powers JR (2017) Application of Enzymes in Food Analysis. In: Food Analysis, Nielsen, S.S. Editor, Springer, pp.469–486

    Google Scholar 

  • Romero E, Gadda G (2014) Alcohol oxidation by flavoenzymes: review. Biomol Concepts 5(4):299–318

    Article  CAS  PubMed  Google Scholar 

  • Rosati G, Gherardi G, Grigoletto D, Marcolin G, Cancellara P, Mammucari C, Scaramuzza M, Toni AD, Reggiani C, Rizzuto R, Paccagnella A (2018) Lactate Dehydrogenase and Glutamate Pyruvate Transaminase biosensing strategies for lactate detection on screen-printed sensors. Catalysis efficiency and interference analysis in complex matrices: from cell cultures to sport medicine. Sensing and Bio-Sensing Research 21: 54–64

    Article  Google Scholar 

  • Rueda F, Gasser B, Sánchez-Chardi A, Roldán M, Villegas S, Puxbaum V, Ferrer-Miralles N, Unzueta U, Vázquez E, Garcia-Fruitós E, Mattanovich D, Villaverde A (2016) Functional inclusion bodies produced in the yeast Pichia pastoris Microbial Cell Factories 15:166 https://doi.org/10.1186/s12934-016-0565-9

  • Ruzheinikov SN, Burke J, Sedelnikova S, Baker PJ, Taylor R, Bullough PA, Muir NM, Gore MG, Rice DW (2001) Glycerol Dehydrogenase. Structure 9 (9): 789–802

    Article  CAS  PubMed  Google Scholar 

  • Sagiroglu A, Altay V (2006) Bioconversion of methanol to formaldehyde. II. By purified methanol oxidase from modified yeast, Hansenula polymorpha. Prep Biochem Biotechnol 36(4):321–332

    Article  CAS  PubMed  Google Scholar 

  • Sahm H, Wagner F (1973) Microbial assimilation of methanol. The ethanol- and methanol-oxidizing enzymes of the yeast Candida boidinii. Eur J Biochem 36(1):250–256

    Article  CAS  PubMed  Google Scholar 

  • Semkiv M, Dmytruk K, Abbas C (2017) Biotechnology of Glycerol Production and Conversion in Yeasts. In: Sibirny A. (eds) Biotechnology of Yeasts and Filamentous Fungi. Springer, Cham 8 pp117–148

    Chapter  Google Scholar 

  • Shang T, Si D, Zhang D, Liu X, Zhao L, Hu C, Fu Y, Zhang R (2017) Enhancement of thermoalkaliphilic xylanase production by Pichia pastoris through novel fed-batch strategy in high cell-density fermentation. BMC Biotechnol 17(1):55. https://doi.org/10.1186/s12896-017-0361-6

  • Sharma S, Saeed A, Johnson C, Gadegaard N, Cass AE (2017) Rapid, low cost prototyping of transdermal devices for personal healthcare monitoring. Sens Bio-Sens Res 13:104–108

    Article  Google Scholar 

  • Shen W, Xue Y, Liu Y, Kong C, Wang X, Huang M, Cai M, Zhou X, Zhang Y, Zhou M (2016) A novel methanol-free Pichia pastoris system for recombinant protein expression. Microb Cell Factories 15(1):178. https://doi.org/10.1186/s12934-016-0578-4

    Article  CAS  Google Scholar 

  • Shkotova LV, Soldatkin AP, Gonchar MV, Schuhmann W, Dzyadevych SV (2006) Amperometric biosensor for ethanol detection based on alcohol oxidase immobilised within electrochemically deposited Resydrol film. Mater Sci Eng C 26:411–414

    Article  CAS  Google Scholar 

  • Shleev SV, Shumakovich GP, Nikitina OV, Morozova OV, Pavlishko HM, Gayda GZ, Gonchar MV (2006) Purification and characterization of alcohol oxidase from a genetically constructed over-producing strain of the methylotrophic yeast Hansenula polymorpha. Biochem Mosc 71(3):245–250

    Article  CAS  Google Scholar 

  • Sibirny AA (Ed) (2017) Book: Biotechnology of yeasts and filamentous fungi. Springer, ISBN 978-3-319-58829-2

    Google Scholar 

  • Sibirny AA, Titorenko VI, Gonchar MV, Ubiyvovk VM, Ksheminskaya GP, Vitvitskaya OP (1988) Genetic control of methanol utilization in yeasts. J Basic Microbiol 28(5):293–319

    Article  CAS  PubMed  Google Scholar 

  • Sibirny V, Demkiv O, Klepach H, Honchar T, Gonchar M (2011a) Alcohol oxidase- and formaldehyde dehydrogenase-based enzymatic methods for formaldehyde assay in fish food products. Food Chem 127:774–779

    Article  CAS  PubMed  Google Scholar 

  • Sibirny V, Demkiv O, Sigawi S, Paryzhak S, Klepach H, Korpan Y, Smutok O, Nisnevich M, Gayda G, Nitzan Y, Puchalski C, Gonchar M (2011b) Formaldehyde oxidizing enzymes and genetically modified yeast Hansenula polymorpha cells in monitoring and removal of formaldehyde. In: Einschlag FSG (Ed) Waste Water – Evaluation and Management. ISBN 978-953-307-233-3. InTech (Croatia) (6):115-154

    Google Scholar 

  • Sigawi S, Smutok O, Demkiv O, Zakalska O, Gayda G, Nitzan Y, Nisnevitch M, Gonchar M (2011) Immobilized formaldehyde-metabolizing enzymes from Hansenula polymorpha for removal and control of airborne formaldehyde. J Biotechnol 153:138–144

    Article  CAS  PubMed  Google Scholar 

  • Sigawi S, Smutok O, Demkiv O, Gayda G, Vus B, Nitzan Y, Gonchar M, Nisnevitch M (2014) Detection of waterborne and airborne formaldehyde: from amperometric chemosensing to a visual biosensor based on alcohol oxidase. Materials 7: 1055–1068

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Kumar M, Mitta A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century: review. 3 Biotech 6:174. https://doi.org/10.1007/s13205-016-0485-8

  • Smith JJ, Burke A, Bredell H, van Zyl WH, Görgens JF (2012) Comparing cytosolic expression to peroxisomal targeting of the chimeric L1/L2 (ChiΔH-L2) gene from human papillomavirus type 16 in the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha. Yeast 29(9):385–393

    Article  CAS  PubMed  Google Scholar 

  • Smutok O, Gayda G, Gonchar M, Schuhmann W (2005) A novel L-lactate-selective biosensor based on the use of flavocytochrome b2 from methylotrophic yeast Hansenula polymorpha. Biosens Bioelectron 20:1285–1290

    Article  CAS  PubMed  Google Scholar 

  • Smutok O, Gayda G, Shuhmann W, Gonchar M (2006a) Development of L-lactate-selective biosensors based on thermostable yeast L-lactate: cytochrome c-oxidoreductase. In: El’skaya AV, Pokhodenko VD (eds) Investigations on sensor systems and technologies. IMBG of NAS of Ukraine, Kyiv, pp 39–45

    Google Scholar 

  • Smutok O, Ngounou B, Pavlishko H, Gayda G, Gonchar M, Schuhmann W (2006b) A reagentless bienzyme amperometric biosensor based on alcohol oxidase/peroxidase and an Os-complex modified electrodeposition paint. Sensors Actuators B Chem 113(2):590–598

    Article  CAS  Google Scholar 

  • Smutok OV, Os’mak GS, Gaida GZ, Gonchar MV (2006c) Screening of yeasts producing stable L-lactate cytochrome c oxidoreductase and study of the regulation of enzyme synthesis. Microbiology (Moscow) 75(1):20–24

    Article  CAS  Google Scholar 

  • Smutok O, Gayda G, Dmytruk K, Klepach H, Nisnevitch M, Sibirny A, Puchalski C, Broda D, Schuhmann W, Gonchar M, Sibirny V (2011) Amperometric biosensors for Lactate, Alcohols, and Glycerol assays in clinical diagnostics. Chapter 20. Іn: Serra PA (Ed) Biosensors – emerging materials and applications. ISBN 978-953-307-328-6. InTech (Croatia) pp 401–446

    Google Scholar 

  • Smutok O, Karkovska M, Smutok H, Gonchar M (2013) Flavocytochrome b2-based enzymatic method of L-lactate assay in food products. The Scientific World Journal 2013: Article ID 461284, 6 pages. https://doi.org/10.1155/2013/461284

    Article  CAS  Google Scholar 

  • Smutok O, Karkovska M, Serkiz Ya, Vus B, Čenas N, Gonchar M (2017) A Novel Mediatorless Biosensor Based On Flavocytochrome b2 Immobilized Onto Gold Nanoclusters For Non-invasive L-lactate Analysis Of Human Liquids. Sensor & Actuators B 250: 469–475

    Google Scholar 

  • Song H, Li Y, Fang W, Geng Y, Wang X, Wang M, Qiu B (2003) Development of a set of expression vectors in Hansenula polymorpha. Biotechnol Lett 25(23):1999–2006

    Article  CAS  PubMed  Google Scholar 

  • Sperry AE, Sen SE (2001) Farnesol oxidation in insects: evidence that the biosynthesis of insect juvenile hormone is mediated by a specific alcohol oxidase. Insect Biochem Mol Biol 31(2):171–178

    Article  CAS  PubMed  Google Scholar 

  • Stasyk O (2017) Methylotrophic yeasts as producers of recombinant proteins. In: Sibirny AA (Ed) Biotechnology of yeasts and filamentous fungi. ISBN 978-3-319-58829-2. Springer, pp 325–350. https://doi.org/10.1007/978-3-319-58829-2

    Google Scholar 

  • Stasyuk N, Gaida G, Gonchar M (2013) L-arginine assay with the use of arginase I. Applied Biochemistry and Microbiology (Moscow) 49(5):529–534

    Article  CAS  Google Scholar 

  • Stasyuk N, Gayda G, Zakalskiy A, Zakalska O, Serkiz R, Gonchar M (2019) Amperometric biosensors based on oxidases and PtRu nanoparticles as artificial peroxidase. Food Chemistry 285: 213–220

    Article  CAS  PubMed  Google Scholar 

  • Sturmberger L, Chappell T, Geier M, Krainer F, Day KJ, Vide U, Trstenjak S, Schiefer A, Richardson T, Soriaga L, Darnhofer B, Birner-Gruenberger R, Glick BS, Tolstorukov I, Cregg J, Madden K, Glieder A (2016) Refined Pichia pastoris reference genome sequence. J Biotechnol 235:121–131

    Article  CAS  PubMed  Google Scholar 

  • Sudbery PE (1996) The expression of recombinant proteins in yeasts. Curr Opin Biotechnol 7(5):517–524

    Article  CAS  PubMed  Google Scholar 

  • Sützl L, Laurent CVFP, Abrera AT, Schütz G, Ludwig R, Haltrich D (2018) Multiplicity of enzymatic functions in the CAZy AA3 family. Appl Microbiol Biotechnol 102(6):2477–2492

    Article  PubMed  CAS  Google Scholar 

  • Synenka M, Gayda G, Klepach H, Ivash M, Gonchar M (2015) Isolation and characterization of recombinant yeast glyceroldehydrogenase. ScienceRise 8(13):7–11. (In Ukrainian). https://doi.org/10.15587/2313-8416.2015.48369

    Article  Google Scholar 

  • Talebian-Kiakalaieh A, Amin NAS, Najaafi N, Tarighi S (2018) A review on the catalytic acetalization of bio-renewable glycerol to fuel additives. Front Chem 6(573). https://doi.org/10.3389/fchem.2018.00573

  • Talebkhan Y, Samadi T, Samie A, Barkhordari F, Azizi M, Khalaj V, Mirabzadeh E (2016) Expression of granulocyte colony stimulating factor (GCSF) in Hansenula polymorpha. Iran J Microbiol 8(1):21–28

    PubMed  PubMed Central  Google Scholar 

  • Theron CW, Berrios J, Delvigne F, Fickers P (2018) Integrating metabolic modeling and population heterogeneity analysis into optimizing recombinant protein production by Komagataella (Pichia) pastoris. Appl Microbiol Biotechnol 102(1):63–80

    Article  CAS  PubMed  Google Scholar 

  • Thomas AS, Krikken AM, de Boer R, Williams C (2018) Hansenula polymorpha Aat2p is targeted to peroxisomes via a novel Pex20p-dependent pathway. FEBS Lett 592(14):2466–2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thömmes J, Halfar M, Gieren H, Curvers S, Takors R, Brunschier R, Kula MR (2001) Human chymotrypsinogen B production from Pichia pastoris by integrated development of fermentation and downstream processing. Part 2. Protein recovery. Biotechnol Prog 17(3):503–512

    Article  PubMed  CAS  Google Scholar 

  • van Berkel WJH (2018) Special issue: Flavoenzymes (Editorial). Molecules 23(8):1957. https://doi.org/10.3390/molecules23081957

    Article  CAS  PubMed Central  Google Scholar 

  • van der Klei IJ, Harder W, Veenhuis M (1991) Biosynthesis and assembly of alcohol oxidase, a peroxisomal matrix protein in methylotrophic yeasts: a review. Yeast 7(3):195–209

    Article  PubMed  Google Scholar 

  • Vandermies M, Fickers P (2019) Bioreactor-Scale Strategies for the Production of Recombinant Protein in the Yeast Yarrowia lipolytica. Microorganisms  7(2) h pii: E40. doi: 10.3390/microorganisms7020040

    Article  PubMed Central  Google Scholar 

  • Vieira Gomes AM, Souza Carmo T, Silva Carvalho L, Mendonça Bahia F, Parachin NS (2018) Comparison of yeasts as hosts for recombinant protein production. Microorganisms 6(2):E38. https://doi.org/10.3390/microorganisms6020038

    Article  PubMed Central  Google Scholar 

  • Vogl T, Gebbie L, Palfreyman RW, Speight R (2018) Effect of plasmid design and type of integration event on recombinant protein expression in Pichia pastoris. Appl Environ Microbiol 84(6):e02712–e02717. https://doi.org/10.1128/AEM.02712-17

    Article  PubMed  PubMed Central  Google Scholar 

  • Vonck J, Parcej DN, Mills DJ (2016) Structure of alcohol oxidase from Pichia pastoris by cryo-electron microscopy. PLoS One 11(7):e0159476. https://doi.org/10.1371/journal.pone.0159476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner JM, Alper HS (2016) Synthetic biology and molecular genetics in non-conventional yeasts: current tools and future advances. Fungal Genet Biol 89:126–136

    Article  CAS  PubMed  Google Scholar 

  • Walker RSK, Pretorius IS (2018) Applications of yeast synthetic biology geared towards the production of biopharmaceuticals. Genes (Basel) 9(7):e340. https://doi.org/10.3390/genes9070340

    Article  CAS  Google Scholar 

  • Weninger A, Hatzl AM, Schmid C, Vogl T, Glieder A (2016) Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris. J Biotechnol 235:139–149

    Article  CAS  PubMed  Google Scholar 

  • Wongnate T, Chaiyen P (2013) The substrate oxidation mechanism of pyranose 2-oxidase and other related enzymes in the glucose-methanol-choline superfamily: review. FEBS J 280(13):3009–3027

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Zhao P, Du J, Li X, Lu W, Hao X, Dong B, Yu Y, Wang L (2018) High-level expression and immunogenicity of porcine circovirus type 2b capsid protein without nuclear localization signal expressed in Hansenula polymorpha. Biologicals 51:18–24

    Article  CAS  PubMed  Google Scholar 

  • Xu P (2018) Production of chemicals using dynamic control of metabolic fluxes. Curr Opin Biotechnol 53:12–19

    Article  CAS  PubMed  Google Scholar 

  • Yamada H, Nagao A, Nishise H, Tani Y (1982) Glycerol Dehydrogenase from Cellulomonas sp. NT 3060: Purification and Characterisation. Agnc Bioi Chem 46 (9): 1333–1339

    CAS  Google Scholar 

  • Yamada-Onodera K, Yamamoto H, Emoto E, Kawahara N, Tani Y (2002) Characterisation of glycerol dehydrogenase from a methylotrophic yeast, Hansenula polymorpha Dl-1, and its gene cloning. Acta Biotechnol 22: 337–353

    Article  CAS  Google Scholar 

  • Yang Z, Zhang Z (2018a) Engineering strategies for enhanced production of protein and bio-products in Pichia pastoris: review. Biotechnol Adv 36(1):182–195

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Zhang Z (2018b) Recent advances on production of 2, 3-butanediol using engineered microbes. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2018.03.019, in press

    Article  CAS  PubMed  Google Scholar 

  • Yurimoto H (2009) Molecular basis of methanol-inducible gene expression and its application in the methylotrophic yeast Candida boidinii. Biosci Biotechnol Biochem 73(4):793–800

    Article  CAS  PubMed  Google Scholar 

  • Zepeda AB, Figueroa CA, Pessoa A, Farías JG (2018a) Free fatty acids reduce metabolic stress and favor a stable production of heterologous proteins in Pichia pastoris. Braz J Microbiol 49(4):856–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zepeda AB, Pessoa A Jr, Farías JG (2018b) Carbon metabolism influenced for promoters and temperature used in the heterologous protein production using Pichia pastoris yeast. Braz J Microbiol 49(Suppl 1):119–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gayda, G.Z., Demkiv, O.M., Klepach, H.M., Gonchar, M.V., Nisnevitch, M. (2019). Effective Technologies for Isolating Yeast Oxido-Reductases of Analytical Importance. In: Sibirny, A. (eds) Non-conventional Yeasts: from Basic Research to Application. Springer, Cham. https://doi.org/10.1007/978-3-030-21110-3_5

Download citation

Publish with us

Policies and ethics