Skip to main content

Overview on the Food Industry and Its Advancement

  • Chapter
  • First Online:
Food Tech Transitions

Abstract

Over the last 100 years, traditional food processing operations have been industrialized and aimed to decrease the losses and waste of food products and increase their quality, shelf life and optimize nutrient availability. However, such treatments may negatively affect the organoleptic and nutritional properties of foods. Accordingly, food scientists and manufacturers has long sought efficient alternatives to fulfill the requirements of food industry. Therefore, in recent years the application of novel and emerging processing technologies such as high pressure processing (HPP), pulsed electric field (PEF), microwave heating (MWH), radio frequency heating (RF), radiation, infrared heating, ohmic heating, ozone, supercritical CO2, etc. has become more prevalent in different aspects of food processing including sterilization and pasteurization, degradation of toxins, modification of hydrocolloids, removal of antibiotics, reduction of insects, peeling, extraction, cooking, blanching, drying, thawing, tempering, concentration, etc. These technologies have improved the availability and quality of food products while being more fast, energy effective and eco-friendly in comparison to conventional heat treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achir, N., Dhuique-Mayer, C., Hadjal, T., Madani, K., Pain, J. P., & Dornier, M. (2016). Pasteurization of citrus juices with ohmic heating to preserve the carotenoid profile. Innovative Food Science & Emerging Technologies, 33, 397–404.

    Article  CAS  Google Scholar 

  • ADA (2000). Position of The American Dietetic Association. Journal of the American Dietetic Association, 100(2), 246–253.

    Google Scholar 

  • Adak, N., Heybeli, N., & Ertekin, C. (2017). Infrared drying of strawberry. Food Chemistry, 219, 109–116.

    Article  CAS  PubMed  Google Scholar 

  • Alegbeleye, O. O., Guimarães, J. T., Cruz, A. G., & Sant’Ana, A. S. (2018). Hazards of a ‘healthy’trend? An appraisal of the risks of raw milk consumption and the potential of novel treatment technologies to serve as alternatives to pasteurization. Trends in Food Science & Technology, 82, 148–166.

    Article  CAS  Google Scholar 

  • Alfaifi, B., Tang, J., Rasco, B., Wang, S., & Sablani, S. (2016). Computer simulation analyses to improve radio frequency (RF) heating uniformity in dried fruits for insect control. Innovative Food Science & Emerging Technologies, 37, 125–137.

    Article  Google Scholar 

  • Alsager, O. A., Alnajrani, M. N., Abuelizz, H. A., & Aldaghmani, I. A. (2018). Removal of antibiotics from water and waste milk by ozonation: Kinetics, byproducts, and antimicrobial activity. Ecotoxicology and Environmental Safety, 158, 114–122.

    Article  CAS  PubMed  Google Scholar 

  • Amaral, G. V., Silva, E. K., Cavalcanti, R. N., Martins, C. P., Andrade, L. G. Z., Moraes, J., Alvarenga, V. O., Guimarães, J. T., Esmerino, E. A., Freitas, M. Q., & Silva, M. C. (2018). Whey-grape juice drink processed by supercritical carbon dioxide technology: Physicochemical characteristics, bioactive compounds and volatile profile. Food Chemistry, 239, 697–703.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, A. K., & Finkelstein, R. (1919). A study of the electropure process of treating milk. Journal of Dairy Science, 2(5), 374–406.

    Article  CAS  Google Scholar 

  • Barbosa-Canovas, G. V., Albaali, A. G., Juliano, P., & Knoerzer, K. (2011). Introduction to innovative food processing technologies: Background, advantages, issues and need for multiphysics modeling. In Innovative food processing technologies: Advances in Multiphysics simulation (pp. 3–23). UK: IFT Press, Wiley-Blackwell.

    Google Scholar 

  • Behrens, J. H., Barcellos, M. N., Frewer, L. J., Nunes, T. P., & Landgraf, M. (2009). Brazilian consumer views on food irradiation. Innovative Food Science & Emerging Technologies, 10(3), 383–389.

    Article  Google Scholar 

  • Blackburn, C. (2017). Food irradiation technologies: Concepts, applications and outcomes (Vol. 4). London: Royal Society of Chemistry.

    Google Scholar 

  • Calado, T., Fernández-Cruz, M. L., Verde, S. C., Venâncio, A., & Abrunhosa, L. (2018). Gamma irradiation effects on ochratoxin A: Degradation, cytotoxicity and application in food. Food Chemistry, 240, 463–471.

    Article  CAS  PubMed  Google Scholar 

  • Carreño, I. (2017). International standards and regulation on food irradiation. In I. C. F. R. Ferreira, A. L. Antonio, & S. C. Verde (Eds.), Food irradiation technologies: Concepts, applications and outcomes (pp. 5–27). London: Royal Society of Chemistry

    Google Scholar 

  • Castanha, N., da Matta Junior, M. D., & Augusto, P. E. D. (2017). Potato starch modification using the ozone technology. Food Hydrocolloids, 66, 343–356.

    Article  CAS  Google Scholar 

  • Cho, W. I., Yi, J. Y., & Chung, M. S. (2016). Pasteurization of fermented red pepper paste by ohmic heating. Innovative Food Science & Emerging Technologies, 34, 180–186.

    Article  CAS  Google Scholar 

  • Choi, E. J., Yang, H. S., Park, H. W., & Chun, H. H. (2018). Inactivation of Escherichia coli O157: H7 and Staphylococcus aureus in red pepper powder using a combination of radio frequency thermal and indirect dielectric barrier discharge plasma non-thermal treatments. LWT, 93, 477–484.

    Article  CAS  Google Scholar 

  • Chung, C. C., Huang, T. C., Li, C. Y., & Chen, H. H. (2013). Agriproducts sterilization and optimization by using supercritical carbon dioxide fluid (SC-CO2). In 4th International Conference on Food Engineering and Biotechnology Singapore (pp. 1–8).

    Google Scholar 

  • Cullen, P. J., Tiwari, B. K., & Valdramidis, V. P. (2012). Status and trends of novel thermal and non-thermal technologies for fluid foods. In Novel thermal and non-thermal technologies for fluid foods (pp. 1–6). Cambridge: Academic press.

    Google Scholar 

  • De Silva, G. O., Abeysundara, A. T., Minoli, M., & Aponso, W. (2018). Impacts of pulsed electric field (PEF) technology in different approaches of food industry: A review. Journal of Pharmacognosy and Phytochemistry, 7(2), 737–740.

    Google Scholar 

  • de Souza, L. P., Faroni, L. R. D. A., Heleno, F. F., Cecon, P. R., Gonçalves, T. D. C., da Silva, G. J., & Prates, L. H. F. (2018). Effects of ozone treatment on postharvest carrot quality. LWT, 90, 53–60.

    Article  CAS  Google Scholar 

  • de Toledo Guimarães, J., Silva, E. K., de Freitas, M. Q., de Almeida Meireles, M. A., & da Cruz, A. G. (2018). Non-thermal emerging technologies and their effects on the functional properties of dairy products. Current Opinion in Food Science, 22, 62–66.

    Article  Google Scholar 

  • Deeth, H. C., & Lewis, M. J. (2017). High temperature processing of milk and milk products. Hoboken: Wiley.

    Book  Google Scholar 

  • del Valle, J. M. (2015). Extraction of natural compounds using supercritical CO2: Going from the laboratory to the industrial application. The Journal of Supercritical Fluids, 96, 180–199.

    Article  CAS  Google Scholar 

  • Derrien, M., Aghabararnejad, M., Gosselin, A., Desjardins, Y., Angers, P., & Boumghar, Y. (2018). Optimization of supercritical carbon dioxide extraction of lutein and chlorophyll from spinach by-products using response surface methodology. LWT, 93, 79–87.

    Article  CAS  Google Scholar 

  • Di Giacomo, G., Scimia, F., & Taglieri, L. (2016). Application of supercritical carbon dioxide for the preservation of fresh-like carrot juice. International Journal of New Technology and Research, 2(2), 71–77.

    Google Scholar 

  • Diehl, J. F. (1999). Safety of irradiated foods. Boca Raton: CRC Press.

    Google Scholar 

  • Ding, C., Khir, R., Pan, Z., Zhao, L., Tu, K., El-Mashad, H., & McHugh, T. H. (2015). Improvement in shelf life of rough and brown rice using infrared radiation heating. Food and Bioprocess Technology, 8(5), 1149–1159.

    Article  Google Scholar 

  • Doona, C. J. (Ed.). (2010). Case studies in novel food processing technologies: Innovations in processing, packaging, and predictive modelling. London: Elsevier.

    Google Scholar 

  • Duranton, F., Simonin, H., Guyon, C., Jung, S., & de Lamballerie, M. (2014). High-pressure processing of meats and seafood. In Emerging technologies for food processing (pp. 35–63). Cambridge: Academic press.

    Google Scholar 

  • Erdogdu, F., Altin, O., Marra, F., & Bedane, T. F. (2017). A computational study to design process conditions in industrial radio-frequency tempering/thawing process. Journal of Food Engineering, 213, 99–112.

    Article  Google Scholar 

  • Eskandari, J., Kermani, A. M., Kouravand, S., & Zarafshan, P. (2018). Design, fabrication, and evaluation a laboratory dry-peeling system for hazelnut using infrared radiation. LWT, 90, 570–576.

    Article  CAS  Google Scholar 

  • Evans, G., & Cox, D. N. (2006). Australian consumers’ antecedents of attitudes towards foods produced by novel technologies. British Food Journal, 108(11), 916–930.

    Article  Google Scholar 

  • Farahnaky, A., Azizi, R., & Gavahian, M. (2012). Accelerated texture softening of some root vegetables by ohmic heating. Journal of Food Engineering, 113(2), 275–280.

    Article  Google Scholar 

  • FDA. (2009). Chapter IV. Outbreaks Associated with Fresh and Fresh-Cut Produce. Incidence, Growth, and Survival of Pathogens in Fresh and Fresh-Cut Produce. http://www.fda.gov/Food/ScienceResearch/ResearchAreas/SafePracticesforFoodProcesses/ucm091265.htm/

  • Fundo, J. F., Miller, F. A., Tremarin, A., Garcia, E., Brandão, T. R., & Silva, C. L. (2018). Quality assessment of Cantaloupe melon juice under ozone processing. Innovative Food Science & Emerging Technologies, 47, 461–466.

    Article  CAS  Google Scholar 

  • GAO, (2000). Food Irradiation: Available Research Indicates that Benefits Outweigh Risks. U.S. General Accounting Office, GAO/RCED-00-217. http://www.gao.gov/archive/2000/rc00217.pdf/

  • García-Risco, M. R., Hernández, E. J., Vicente, G., Fornari, T., Señoráns, F. J., & Reglero, G. (2011). Kinetic study of pilot-scale supercritical CO2 extraction of rosemary (Rosmarinus officinalis) leaves. The Journal of Supercritical Fluids, 55(3), 971–976.

    Article  CAS  Google Scholar 

  • Gili, R. D., Palavecino, P. M., Penci, M. C., Martinez, M. L., & Ribotta, P. D. (2017). Wheat germ stabilization by infrared radiation. Journal of Food Science and Technology, 54(1), 71–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes, C. F., Sarkis, J. R., & Marczak, L. D. F. (2018). Ohmic blanching of Tetsukabuto pumpkin: Effects on peroxidase inactivation kinetics and color changes. Journal of Food Engineering, 233, 74–80.

    Article  CAS  Google Scholar 

  • Grahl, T., & Märkl, H. (1996). Killing of microorganisms by pulsed electric fields. Applied Microbiology and Biotechnology, 45(1–2), 148–157.

    Article  CAS  PubMed  Google Scholar 

  • Granella, S. J., Christ, D., Werncke, I., Bechlin, T. R., & Coelho, S. R. M. (2018). Effect of drying and ozonation process on naturally contaminated wheat seeds. Journal of Cereal Science, 80, 205–211.

    Article  CAS  Google Scholar 

  • Hu, G., Zheng, Y., Liu, Z., Xiao, Y., Deng, Y., & Zhao, Y. (2017). Effects of high hydrostatic pressure, ultraviolet light-C, and far-infrared treatments on the digestibility, antioxidant and antihypertensive activity of α-casein. Food Chemistry, 221, 1860–1866.

    Article  CAS  PubMed  Google Scholar 

  • Huang, Z., Zhang, B., Marra, F., & Wang, S. (2016). Computational modelling of the impact of polystyrene containers on radio frequency heating uniformity improvement for dried soybeans. Innovative Food Science & Emerging Technologies, 33, 365–380.

    Article  Google Scholar 

  • Hunt, N. K., & Mariñas, B. J. (1999). Inactivation of Escherichia coli with ozone: Chemical and inactivation kinetics. Water Research, 33(11), 2633–2641.

    Article  CAS  Google Scholar 

  • Icier, F., Yildiz, H., Sabanci, S., Cevik, M., & Cokgezme, O. F. (2017). Ohmic heating assisted vacuum evaporation of pomegranate juice: Electrical conductivity changes. Innovative Food Science & Emerging Technologies, 39, 241–246.

    Article  CAS  Google Scholar 

  • Ilgaz, S., Sat, I. G., & Polat, A. (2018). Effects of processing parameters on the caffeine extraction yield during decaffeination of black tea using pilot-scale supercritical carbon dioxide extraction technique. Journal of Food Science and Technology, 55(4), 1407–1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irakli, M., Kleisiaris, F., Mygdalia, A., & Katsantonis, D. (2018). Stabilization of rice bran and its effect on bioactive compounds content, antioxidant activity and storage stability during infrared radiation heating. Journal of Cereal Science, 80, 135–142.

    Article  CAS  Google Scholar 

  • Jermann, C., Koutchma, T., Margas, E., Leadley, C., & Ros-Polski, V. (2015). Mapping trends in novel and emerging food processing technologies around the world. Innovative Food Science & Emerging Technologies, 31, 14–27.

    Article  Google Scholar 

  • Jiang, Y., Wang, S., He, F., Fan, Q., Ma, Y., Yan, W., Tang, Y., Yang, R., & Zhao, W. (2018). Inactivation of lipoxygenase in soybean by radio frequency treatment. International Journal of Food Science & Technology, 53(12), 2738–2747.

    Article  CAS  Google Scholar 

  • Kalla, A. M. (2017). Microwave energy and its application in food industry: A review. Asian Journal of Dairy & Food Research, 36(1), 37–44.

    Google Scholar 

  • Kanjanapongkul, K. (2017). Rice cooking using ohmic heating: Determination of electrical conductivity, water diffusion and cooking energy. Journal of Food Engineering, 192, 1–10.

    Article  Google Scholar 

  • Kempkes, M., Simpson, R., & Roth, I. (2016). Removing barriers to commercialization of PEF systems and processes. In Proceedings of 3rd School on Pulsed Electric Field Processing of Food (pp. 1–6). Dublin: Institute of Food and Health, University College Dublin.

    Google Scholar 

  • Kettler, K., Adhikari, K., & Singh, R. K. (2017). Blanchability and sensory quality of large runner peanuts blanched in a radiant wall oven using infrared radiation. Journal of the Science of Food and Agriculture, 97(13), 4621–4628.

    Article  CAS  PubMed  Google Scholar 

  • Khadre, M. A., Yousef, A. E., & Kim, J. G. (2001). Microbiological aspects of ozone applications in food: A review. Journal of Food Science, 66(9), 1242–1252.

    Article  CAS  Google Scholar 

  • Kim, J. G., Yousef, A. E., & Dave, S. (1999). Application of ozone for enhancing the microbiological safety and quality of foods: A review. Journal of Food Protection, 62(9), 1071–1087.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S. Y., Sagong, H. G., Choi, S. H., Ryu, S., & Kang, D. H. (2012). Radio-frequency heating to inactivate Salmonella Typhimurium and Escherichia coli O157: H7 on black and red pepper spice. International Journal of Food Microbiology, 153(1–2), 171–175.

    Article  PubMed  Google Scholar 

  • Kirmaci, B., & Singh, R. K. (2012). Quality of chicken breast meat cooked in a pilot-scale radio frequency oven. Innovative Food Science & Emerging Technologies, 14, 77–84.

    Article  Google Scholar 

  • Knez, Ž., Markočič, E., Leitgeb, M., Primožič, M., Hrnčič, M. K., & Škerget, M. (2014). Industrial applications of supercritical fluids: A review. Energy, 77, 235–243.

    Article  CAS  Google Scholar 

  • Knoerzer, K., Buckow, R., Trujillo, F. J., & Juliano, P. (2015). Multiphysics simulation of innovative food processing technologies. Food Engineering Reviews, 7(2), 64–81.

    Article  Google Scholar 

  • Lascorz, D., Torella, E., Lyng, J. G., & Arroyo, C. (2016). The potential of ohmic heating as an alternative to steam for heat processing shrimps. Innovative Food Science & Emerging Technologies, 37, 329–335.

    Article  CAS  Google Scholar 

  • Leadley, C. (2008). Novel commercial preservation methods. In G. S. Tucker (Ed.), Food biodeterioration and preservation (pp. 211–242). Hoboken: Blackwell Publishing.

    Chapter  Google Scholar 

  • Liao, M., Zhao, Y., Gong, C., Zhang, H., & Jiao, S. (2018). Effects of hot air-assisted radio frequency roasting on quality and antioxidant activity of cashew nut kernels. LWT, 93, 274–280.

    Article  CAS  Google Scholar 

  • Ling, B., Lyng, J. G., & Wang, S. (2018). Effects of hot air-assisted radio frequency heating on enzyme inactivation, lipid stability and product quality of rice bran. LWT, 91, 453–459.

    Article  CAS  Google Scholar 

  • Luo, X., Wang, R., Wang, L., Li, Y., Bian, Y., & Chen, Z. (2014). Effect of ozone treatment on aflatoxin B1 and safety evaluation of ozonized corn. Food Control, 37, 171–176.

    Article  CAS  Google Scholar 

  • Mahapatra, A. K., Muthukumarappan, K., & Julson, J. L. (2005). Applications of ozone, bacteriocins and irradiation in food processing: A review. Critical Reviews in Food Science and Nutrition, 45(6), 447–461.

    Article  CAS  PubMed  Google Scholar 

  • Mans, J., & Swientek, B. (1993). Electrifying progress in aseptic technology. Prepared foods, 162(9), 151–156.

    Google Scholar 

  • Meda, V., Orsat, V., & Raghavan, V. (2017). Microwave heating and the dielectric properties of foods. In The microwave processing of foods (pp. 23–43). Cambridge: Woodhead Publishing.

    Google Scholar 

  • Michelino, F., Zambon, A., Vizzotto, M. T., Cozzi, S., & Spilimbergo, S. (2018). High power ultrasound combined with supercritical carbon dioxide for the drying and microbial inactivation of coriander. Journal of CO2 Utilization, 24, 516–521.

    Article  CAS  Google Scholar 

  • Mittendorfer, J. (2016). Food irradiation facilities: Requirements and technical aspects. Radiation Physics and Chemistry, 129, 61–63.

    Article  CAS  Google Scholar 

  • Muntean, M. V., Marian, O., Barbieru, V., Cătunescu, G. M., Ranta, O., Drocas, I., & Terhes, S. (2016). High pressure processing in food industry–characteristics and applications. Agriculture and Agricultural Science Procedia, 10, 377–383.

    Article  Google Scholar 

  • Muthukumarappan, K. (2011). Ozone processing. In D. W. Sun (Ed.) Handbook of food safety engineering (pp. 681–692), 681–692. West Sussex: Wiley-Blackwell.

    Google Scholar 

  • Muthukumarappan, K., Halaweish, F., & Naidu, A. S. (2000). Ozone. In A. S. Naidu (Ed.), Natural food antimicrobial systems (pp. 796–813). Boca Raton: CRC Press.

    Google Scholar 

  • Muthukumarappan, K., Julson, J. L., Mahapatra, A. K., & Nanda, S. K. (2002). Ozone applications in food processing. In Souvenir 2002—-Proc. College of Agric. Eng. Technol. alumnai meet (pp. 32–35).

    Google Scholar 

  • Nagaraj, G., Purohit, A., Harrison, M., Singh, R., Hung, Y. C., & Mohan, A. (2016). Radiofrequency pasteurization of inoculated ground beef homogenate. Food Control, 59, 59–67.

    Article  CAS  Google Scholar 

  • Niemira, B. A., & Gao, M. (2012). Irradiation of fluid foods. In P.J. Cullen, B.K. Tiwari, V. Valdramidis (Eds.), Novel thermal and non-thermal Technologies for Fluid Foods (pp. 167–183). Cambridge: Academic press.

    Google Scholar 

  • Omar, A. M., Norsalwani, T. T., Asmah, M. S., Badrulhisham, Z. Y., Easa, A. M., Omar, F. M., Hossain, M. S., Zuknik, M. H., & Norulaini, N. N. (2018). Implementation of the supercritical carbon dioxide technology in oil palm fresh fruits bunch sterilization: A review. Journal of CO2 Utilization, 25, 205–215.

    Article  CAS  Google Scholar 

  • Oualid, H. A., Amadine, O., Essamlali, Y., Dânoun, K., & Zahouily, M. (2018). Supercritical CO2 drying of alginate/zinc hydrogels: A green and facile route to prepare ZnO foam structures and ZnO nanoparticles. RSC Advances, 8(37), 20737–20747.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozturk, S., Kong, F., Trabelsi, S., & Singh, R. K. (2016). Dielectric properties of dried vegetable powders and their temperature profile during radio frequency heating. Journal of Food Engineering, 169, 91–100.

    Article  Google Scholar 

  • Ozturk, S., Kong, F., Singh, R. K., Kuzy, J. D., Li, C., & Trabelsi, S. (2018). Dielectric properties, heating rate, and heating uniformity of various seasoning spices and their mixtures with radio frequency heating. Journal of Food Engineering, 228, 128–141.

    Article  CAS  Google Scholar 

  • Palazoğlu, T. K., & Miran, W. (2018). Experimental investigation of the effect of conveyor movement and sample’s vertical position on radio frequency tempering of frozen beef. Journal of Food Engineering, 219, 71–80.

    Article  Google Scholar 

  • Patil, S., & Bourke, P. (2012). Ozone processing of fluid foods. In Novel thermal and non-thermal technologies for fluid foods (pp. 225–261). Cambridge: Academic press.

    Google Scholar 

  • Pawar, S. B., & Pratape, V. M. (2017). Fundamentals of infrared heating and its application in drying of food materials: A review. Journal of Food Process Engineering, 40(1), e12308.

    Article  CAS  Google Scholar 

  • Pereira, R. N., & Vicente, A. A. (2010). Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International, 43(7), 1936–1943.

    Article  Google Scholar 

  • Pereira, R. N., Rodrigues, R. M., Genisheva, Z., Oliveira, H., de Freitas, V., Teixeira, J. A., & Vicente, A. A. (2016). Effects of ohmic heating on extraction of food-grade phytochemicals from colored potato. LWT, 74, 493–503.

    Article  CAS  Google Scholar 

  • Perrut, M. (2012). Sterilization and virus inactivation by supercritical fluids (a review). The Journal of Supercritical Fluids, 66, 359–371.

    Article  CAS  Google Scholar 

  • Rahman, M. S., Seo, J. K., Choi, S. G., Gul, K., & Yang, H. S. (2018). Physicochemical characteristics and microbial safety of defatted bovine heart and its lipid extracted with supercritical-CO2 and solvent extraction. LWT, 97, 355–361.

    Article  CAS  Google Scholar 

  • Ramaswamy, R., Jin, T., Balasubramaniam, V. M., & Zhang, H. (2005). Pulsed electric field processing: fact sheet for food processors. Ohio State University Extension Factsheet, 22.

    Google Scholar 

  • Rawson, A., Tiwari, B. K., Brunton, N., Brennan, C., Cullen, P. J., & O’donnell, C. P. (2012). Application of supercritical carbon dioxide to fruit and vegetables: Extraction, processing, and preservation. Food Reviews International, 28(3), 253–276.

    Article  CAS  Google Scholar 

  • Riadh, M. H., Ahmad, S. A. B., Marhaban, M. H., & Soh, A. C. (2015). Infrared heating in food drying: An overview. Drying Technology, 33(3), 322–335.

    Article  CAS  Google Scholar 

  • Rice, R. G., Overbeck, P., & Larson, K. A. (2000). Costs of ozone in small drinking water systems. In Proc. Small drinking water and wastewater systems. Ann Arbor: NSF International.

    Google Scholar 

  • Rincon, A. M., Singh, R. K., & Stelzleni, A. M. (2015). Effects of endpoint temperature and thickness on quality of whole muscle non-intact steaks cooked in a radio frequency oven. LWT-Food Science and Technology, 64(2), 1323–1328.

    Article  CAS  Google Scholar 

  • Ruan, R., Ye, X., Chen, P., Doona, C. J., Taub, I., & Center, N. S. (2001). Ohmic heating. In P. Richardson (Ed.), Thermal technologies in food processing (pp. 241–265). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Sabanci, S., & Icier, F. (2017). Applicability of ohmic heating assisted vacuum evaporation for concentration of sour cherry juice. Journal of Food Engineering, 212, 262–270.

    Article  CAS  Google Scholar 

  • Saberian, H., Hamidi-Esfahani, Z., Gavlighi, H. A., & Barzegar, M. (2017). Optimization of pectin extraction from orange juice waste assisted by ohmic heating. Chemical Engineering and Processing: Process Intensification, 117, 154–161.

    Article  CAS  Google Scholar 

  • Sarkis, J. R., Jaeschke, D. P., Tessaro, I. C., & Marczak, L. D. (2013). Effects of ohmic and conventional heating on anthocyanin degradation during the processing of blueberry pulp. LWT-Food Science and Technology, 51(1), 79–85.

    Article  CAS  Google Scholar 

  • Schlisselberg, D. B., Kler, E., Kalily, E., Kisluk, G., Karniel, O., & Yaron, S. (2013). Inactivation of foodborne pathogens in ground beef by cooking with highly controlled radio frequency energy. International Journal of Food Microbiology, 160(3), 219–226.

    Article  PubMed  Google Scholar 

  • Smith, J. S., & Pillai, S. (2004). Irradiation and food safety. Food Technology, 58(11), 48–55.

    Google Scholar 

  • Soares, V. B., & Coelho, G. L. (2012). Safety study of an experimental apparatus for extraction with supercritical CO2. Brazilian Journal of Chemical Engineering, 29(3), 677–682.

    Article  CAS  Google Scholar 

  • Subramaniam, B. (2017). Sustainable processes with supercritical fluids. In: Encyclopedia of Sustainable Technologies, Pages 653–662. Elsevier, UK.

    Google Scholar 

  • Tello, J., Viguera, M., & Calvo, L. (2011). Extraction of caffeine from Robusta coffee (Coffea canephora var. Robusta) husks using supercritical carbon dioxide. The Journal of Supercritical Fluids, 59, 53–60.

    Article  CAS  Google Scholar 

  • Termrittikul, P., Jittanit, W., & Sirisansaneeyakul, S. (2018). The application of ohmic heating for inulin extraction from the wet-milled and dry-milled powders of Jerusalem artichoke (Helianthus tuberosus L.) tuber. Innovative Food Science & Emerging Technologies, 48, 99–110.

    Article  CAS  Google Scholar 

  • Thayer, D. W., & Boyd, G. (1995). Radiation sensitivity of Listeria monocytogenes on beef as affected by temperature. Journal of Food Science, 60(2), 237–240.

    Article  CAS  Google Scholar 

  • Tiwari, G., Wang, S., Tang, J., & Birla, S. L. (2011). Computer simulation model development and validation for radio frequency (RF) heating of dry food materials. Journal of Food Engineering, 105(1), 48–55.

    Article  Google Scholar 

  • Tuncel, N. B., Uygur, A., & Yüceer, Y. K. (2017). The effects of infrared roasting on HCN content, chemical composition and storage stability of flaxseed and flaxseed oil. Journal of the American Oil Chemists’ Society, 94(6), 877–884.

    Article  CAS  Google Scholar 

  • Turp, G. Y., Icier, F., & Kor, G. (2016). Influence of infrared final cooking on color, texture and cooking characteristics of ohmically pre-cooked meatball. Meat Science, 114, 46–53.

    Article  Google Scholar 

  • Valadez-Carmona, L., Ortiz-Moreno, A., Ceballos-Reyes, G., Mendiola, J. A., & Ibáñez, E. (2018). Valorization of cacao pod husk through supercritical fluid extraction of phenolic compounds. The Journal of Supercritical Fluids, 131, 99–105.

    Article  CAS  Google Scholar 

  • Van Bockstal, P. J., De Meyer, L., Corver, J., Vervaet, C., & De Beer, T. (2017). Noncontact infrared-mediated heat transfer during continuous freeze-drying of unit doses. Journal of Pharmaceutical Sciences, 106(1), 71–82.

    Article  PubMed  CAS  Google Scholar 

  • Venkitasamy, C., Zhu, C., Brandl, M. T., Niederholzer, F. J., Zhang, R., McHugh, T. H., & Pan, Z. (2018). Feasibility of using sequential infrared and hot air for almond drying and inactivation of enterococcus faecium NRRL B-2354. LWT, 95, 123–128.

    Article  CAS  Google Scholar 

  • Wang, S., Tiwari, G., Jiao, S., Johnson, J. A., & Tang, J. (2010). Developing postharvest disinfestation treatments for legumes using radio frequency energy. Biosystems Engineering, 105(3), 341–349.

    Article  Google Scholar 

  • Wang, Y., Zhang, L., Johnson, J., Gao, M., Tang, J., Powers, J. R., & Wang, S. (2014). Developing hot air-assisted radio frequency drying for in-shell macadamia nuts. Food and Bioprocess Technology, 7(1), 278–288.

    Article  CAS  Google Scholar 

  • Wang, H. C., Zhang, M., & Adhikari, B. (2015). Drying of shiitake mushroom by combining freeze-drying and mid-infrared radiation. Food and Bioproducts Processing, 94, 507–517.

    Article  CAS  Google Scholar 

  • Wongsa-Ngasri, P., & Sastry, S. K. (2015). Effect of ohmic heating on tomato peeling. LWT-Food Science and Technology, 61(2), 269–274.

    Article  CAS  Google Scholar 

  • World Health Organization (WHO), 1999. High-Dose Irradiation: Wholesomeness of Food Irradiated with Doses above 10 KGy, Joint FAO/IAEA/WHO Study Group on HighDose Irradiation, Geneva, 1520 September 1997, WHO Technical Report Series 890

    Google Scholar 

  • Xie, L., Cahoon, E., Zhang, Y., & Ciftci, O. N. (2019). Extraction of astaxanthin from engineered Camelina sativa seed using ethanol-modified supercritical carbon dioxide. The Journal of Supercritical Fluids, 143, 171–178.

    Article  CAS  Google Scholar 

  • Xu, L. (1999). Use of ozone to improve the safety of fresh fruits and vegetables. Food Technology, 53, 58–63.

    CAS  Google Scholar 

  • Yalcin, S., & Basman, A. (2015). Effects of infrared treatment on urease, trypsin inhibitor and lipoxygenase activities of soybean samples. Food Chemistry, 169, 203–210.

    Article  CAS  PubMed  Google Scholar 

  • Yılmaz, N. (2016). Middle infrared stabilization of individual rice bran milling fractions. Food Chemistry, 190, 179–185.

    Article  PubMed  CAS  Google Scholar 

  • Zabot, G. L., Moraes, M. N., Petenate, A. J., & Meireles, M. A. A. (2014). Influence of the bed geometry on the kinetics of the extraction of clove bud oil with supercritical CO2. The Journal of Supercritical Fluids, 93, 56–66.

    Article  CAS  Google Scholar 

  • Zhang, X., Heinonen, S., & Levänen, E. (2014). Applications of supercritical carbon dioxide in materials processing and synthesis. RSC Advances, 4(105), 61137–61152.

    Article  CAS  Google Scholar 

  • Zhang, Z. S., Xie, Q. F., & Che, L. M. (2018). Effects of gamma irradiation on aflatoxin B1 levels in soybean and on the properties of soybean and soybean oil. Applied Radiation and Isotopes, 139, 224–230.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, A., Zhang, B., Zhou, L., & Wang, S. (2016). Application of radio frequency pasteurization to corn (Zea mays L.): Heating uniformity improvement and quality stability evaluation. Journal of Stored Products Research, 68, 63–72.

    Article  Google Scholar 

  • Zheng, A., Zhang, L., & Wang, S. (2017). Verification of radio frequency pasteurization treatment for controlling Aspergillus parasiticus on corn grains. International Journal of Food Microbiology, 249, 27–34.

    Article  PubMed  Google Scholar 

  • Zhou, L., Ling, B., Zheng, A., Zhang, B., & Wang, S. (2015). Developing radio frequency technology for postharvest insect control in milled rice. Journal of Stored Products Research, 62, 22–31.

    Article  Google Scholar 

  • Zhu, F. (2018). Effect of ozone treatment on the quality of grain products. Food Chemistry, 264, 358.

    Google Scholar 

  • Zhu, H., Li, D., Ma, J., Du, Z., Li, P., Li, S., & Wang, S. (2018a). Radio frequency heating uniformity evaluation for mid-high moisture food treated with cylindrical electromagnetic wave conductors. Innovative Food Science & Emerging Technologies, 47, 56–70.

    Article  Google Scholar 

  • Zhu, X. H., Yang, Y. X., & Duan, Z. H. (2018b). Research progress on the effect of microwave sterilization on agricultural products quality. In IOP Conference Series: Earth and Environmental Science (Vol. 113, No. 1, p. 012096). Bristol: IOP Publishing.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Niakousari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Niakousari, M., Hedayati, S., Tahsiri, Z., Mirzaee, H. (2019). Overview on the Food Industry and Its Advancement. In: Piatti, C., Graeff-Hönninger, S., Khajehei, F. (eds) Food Tech Transitions. Springer, Cham. https://doi.org/10.1007/978-3-030-21059-5_2

Download citation

Publish with us

Policies and ethics