Skip to main content

Quantitative Prediction of Toxicity of Substituted Phenols Using Deep Learning

  • Conference paper
  • First Online:
  • 686 Accesses

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 146))

Abstract

Phenol derivatives are well known by their toxicological effect on environment and human health. However, like most chemicals, the experimental determination of phenols toxicity is a very demanding and complex task. Hence, there is a great motivation for the development of quantitative structure-cytotoxicity relationship (QSCR) that can predict accurately the cytotoxicity of new phenolic compounds. Machine learning (ML) provides a set of methods that exhibit high prediction accuracy and outperforms many other approaches. In the current work, deep neural networks techniques were used to perform QSCR for a set of substituted phenol compounds. Both electron-releasing substituents and electron-withdrawing substituents were considered showing the impact of the electronic effect on the model establishment. The model established was highly successful in predicting cytotoxicity of new compounds.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vermerris, W., Nicholson, R.: Phenolic Compound Biochemistry. Springer, Netherlands (2006)

    Google Scholar 

  2. Shvedova, A.A., et al.: Redox cycling of phenol induces oxidative stress in human epidermal keratinocytes. J. Invest. Dermatol. 114(2), 354–364 (2000)

    Article  Google Scholar 

  3. Shalaby, S., Horwitz, B.A.: Plant phenolic compounds and oxidative stress: integrated signals in fungal–plant interactions. Curr. Genet. 61(3), 347–357 (2015)

    Article  Google Scholar 

  4. Villegas, L.G.C., Mashhadi, N., Chen, M., Mukherjee, D., Taylor, K.E., Biswas, N.: A short review of techniques for phenol removal from wastewater. Curr. Pollut. Rep. 2(3), 157–167 (2016)

    Article  Google Scholar 

  5. Yu, M.-H., Yang, T.-Y., Ho, H.-H., Huang, H.-P., Chan, K.-C., Wang, C.-J.: Mulberry polyphenol extract inhibits FAK/Src/PI3 K complex and related signaling To regulate the migration in A7r5 cells. J. Agric. Food Chem. 66(15), 3860–3869 (2018)

    Article  Google Scholar 

  6. Gramec Skledar, D., Peterlin Mašič, L.: Bisphenol A and its analogs: Do their metabolites have endocrine activity? Environ. Toxicol. Pharmacol. 47, 182–199 (Oct 2016)

    Article  Google Scholar 

  7. Yehye, W.A., et al.: Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): a review. Eur. J. Med. Chem. 101, 295–312 (2015)

    Article  Google Scholar 

  8. Murray, A.R., Kisin, E., Castranova, V., Kommineni, C., Gunther, M.R., Shvedova, A.A.: Phenol-induced in vivo oxidative stress in skin: evidence for enhanced free radical generation, thiol oxidation, and antioxidant depletion. Chem. Res. Toxicol. 20(12), 1769–1777 (2007)

    Article  Google Scholar 

  9. Douali, L., Villemin, D., Cherqaoui, D.: Comparative QSAR based on neural networks for the anti-HIV activity of HEPT derivatives. Curr. Pharm. Des. 9(22), 1817–1826 (2003)

    Article  Google Scholar 

  10. Cherkasov, A., et al.: QSAR modeling: where have you been? where are you going to? J. Med. Chem. 57(12), 4977–5010 (2014)

    Article  Google Scholar 

  11. Hinton, G.E., Osindero, S., Teh, Y.-W.: A fast learning algorithm for deep belief nets. Neural Comput. 18(7), 1527–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G. E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)

    Google Scholar 

  13. Goh, G.B., Hodas, N.O., Vishnu, A.: Deep learning for computational chemistry. J. Comput. Chem. 38(16), 1291–1307 (2017)

    Article  Google Scholar 

  14. Yu, D., Deng, L.: Deep learning and its applications to signal and information processing [exploratory dsp]. IEEE Signal Process. Mag. 28(1), 145–154 (2011)

    Article  Google Scholar 

  15. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT press, Cambridge (2016)

    Google Scholar 

  16. Loussaief, S., Abdelkrim, A.: Machine learning framework for image classification. In: 2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), pp. 58–61 (2016)

    Google Scholar 

  17. Chabchoub, S., Mansouri, S., Ben Salah, R.: Impedance Cardiography heartbeat classification using LP, DWT, KNN and SVM. In: 2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), pp. 53–57 (2016)

    Google Scholar 

  18. Mabrouk, H.H.: Machine learning from experience feedback on accidents in transport. In: 2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT), pp. 246–251 (2016)

    Google Scholar 

  19. Selassie, C.D., et al.: Comparative QSAR and the radical toxicity of various functional groups. Chem. Rev. 102(7), 2585–2605 (2002)

    Article  Google Scholar 

  20. Selassie, C.D., Kapur, S., Verma, R.P., Rosario, M.: Cellular apoptosis and cytotoxicity of phenolic compounds: a quantitative structure-activity relationship study. J. Med. Chem. 48(23), 7234–7242 (2005)

    Article  Google Scholar 

  21. Garg, R., Kurup, A., Hansch, C.: Comparative QSAR: on the toxicology of the phenolic OH moiety. Crit. Rev. Toxicol. 31(2), 223–245 (2001)

    Article  Google Scholar 

  22. Moridani, M.Y., Siraki, A., O’Brien, P.J.: Quantitative structure toxicity relationships for phenols in isolated rat hepatocytes. Chem. Biol. Interact. 145(2), 213–223 (2003)

    Article  Google Scholar 

  23. Dieguez-Santana, K., Pham-The, H., Villegas-Aguilar, P.J., Le-Thi-Thu, H., Castillo-Garit, J.A., Casañola-Martin, G.M.: Prediction of acute toxicity of phenol derivatives using multiple linear regression approach for Tetrahymena pyriformis contaminant identification in a median-size database. Chemosphere 165, 434–441 (2016)

    Article  Google Scholar 

  24. Aptula, A.O., Roberts, D.W., Cronin, M.T.D., Schultz, T.W.: Chemistry-toxicity relationships for the effects of di- and trihydroxybenzenes to Tetrahymena pyriformis. Chem. Res. Toxicol. 18(5), 844–854 (2005)

    Article  Google Scholar 

  25. Xu, L., Ball, J.W., Dixon, S.L., Jurs, P.C.: Quantitative structure-activity relationships for toxicity of phenols using regression analysis and computational neural networks. Environ. Toxicol. Chem. 13(5), 841–851 (1994)

    Article  Google Scholar 

  26. Selassie, C.D., DeSoyza, T.V., Rosario, M., Gao, H., Hansch, C.: Phenol toxicity in leukemia cells: a radical process? Chem. Biol. Interact. 113(3), 175–190 (1998)

    Article  Google Scholar 

  27. Selassie, C., Verma, R.P.: QSAR of toxicology of substituted phenols. J. Pestic. Sci. 40(1), 1–12 (2015)

    Article  Google Scholar 

  28. Hansch, C., Zhang, L.: Comparative QSAR: Radical toxicity and scavenging. Two different sides of the same coin. SAR QSAR Environ. Res. 4(2–3), 73–82 (1995)

    Article  Google Scholar 

  29. Hansch, C., McKarns, S.C., Smith, C.J., Doolittle, D.J.: Comparative QSAR evidence for a free-radical mechanism of phenol-induced toxicity. Chem. Biol. Interact. 127(1), 61–72 (2000)

    Article  Google Scholar 

  30. Cronin, M.T.D., et al.: Comparative assessment of methods to develop QSARs for the prediction of the toxicity of phenols to Tetrahymena pyriformis. Chemosphere 49(10), 1201–1221 (2002)

    Article  Google Scholar 

  31. Chollet, F.: Keras (2015)

    Google Scholar 

  32. Abadi, M. et al.: TensorFlow: a system for large-scale machine learning. Google AI [Online]. Available: https://ai.google/research/pubs/pub45381 (2016). Accessed 15 Sep 2018

  33. Douali, L., Villemin, D., Zyad, A., Cherqaoui, D.: Artificial neural networks: non-linear QSAR studies of HEPT derivatives as HIV-1 reverse transcriptase inhibitors. Mol. Divers. 8(1), 1–8 (2004)

    Article  Google Scholar 

  34. Douali, L., Villemin, D., Cherqaoui, D., Douali, L., Villemin, D., Cherqaoui, D.: Exploring QSAR of non-nucleoside reverse transcriptase inhibitors by neural networks: TIBO derivatives. Int. J. Mol. Sci. 5(2), 48–55 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Latifa Douali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Douali, L. (2020). Quantitative Prediction of Toxicity of Substituted Phenols Using Deep Learning. In: Bouhlel, M., Rovetta, S. (eds) Proceedings of the 8th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT’18), Vol.1. SETIT 2018. Smart Innovation, Systems and Technologies, vol 146. Springer, Cham. https://doi.org/10.1007/978-3-030-21005-2_12

Download citation

Publish with us

Policies and ethics