Skip to main content

Structure Aware SLAM Using Quadrics and Planes

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11363))

Included in the following conference series:

Abstract

Simultaneous Localization And Mapping (SLAM) is a fundamental problem in mobile robotics. While point-based SLAM methods provide accurate camera localization, the generated maps lack semantic information. On the other hand, state of the art object detection methods provide rich information about entities present in the scene from a single image. This work marries the two and proposes a method for representing generic objects as quadrics which allows object detections to be seamlessly integrated in a SLAM framework. For scene coverage, additional dominant planar structures are modeled as infinite planes. Experiments show that the proposed points-planes-quadrics representation can easily incorporate Manhattan and object affordance constraints, greatly improving camera localization and leading to semantically meaningful maps.

Supported by the ARC Fellowship FL130100102 to IR and the ACRV CE140100016.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Comparison for RMSE of relative errors, RTE and RRE, as well as run-time analysis are reported in the supplementary material.

References

  1. Bao, S.Y., Bagra, M., Chao, Y.W., Savarese, S.: Semantic structure from motion with points, regions, and objects. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  2. Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332 (2016)

    Article  Google Scholar 

  3. Cross, G., Zisserman, A.: Quadric reconstruction from dual-space geometry. In: 1998 Sixth International Conference on Computer Vision, pp. 25–31. IEEE (1998)

    Google Scholar 

  4. Dellaert, F., Kaess, M.: Factor graphs for robot perception. Found. Trends Robot. 6(1–2), 1–139 (2017). https://doi.org/10.1561/2300000043

    Article  Google Scholar 

  5. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile, 7–13 December 2015, pp. 2650–2658 (2015). https://doi.org/10.1109/ICCV.2015.304

  6. Engel, J., Koltun, V., Cremers, D.: Direct sparse odometry. IEEE Trans. Pattern Anal. Mach. Intell. 40, 611–625 (2017)

    Article  Google Scholar 

  7. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_54

    Chapter  Google Scholar 

  8. Forster, C., Pizzoli, M., Scaramuzza, D.: SVO: fast semi-direct monocular visual odometry. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 15–22. IEEE (2014)

    Google Scholar 

  9. Gálvez-López, D., Tardos, J.D.: Bags of binary words for fast place recognition in image sequences. IEEE Trans. Robot. 28(5), 1188–1197 (2012)

    Article  Google Scholar 

  10. Gay, P., Bansal, V., Rubino, C., Bue, A.D.: Probabilistic structure from motion with objects (PSfMO). In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 3094–3103, October 2017. https://doi.org/10.1109/ICCV.2017.334

  11. Gee, A.P., Mayol-Cuevas, W.: Real-time model-based SLAM using line segments. In: Bebis, G., et al. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 354–363. Springer, Heidelberg (2006). https://doi.org/10.1007/11919629_37

    Chapter  Google Scholar 

  12. Gomez-Ojeda, R., Moreno, F.A., Scaramuzza, D., Gonzalez-Jimenez, J.: PL-SLAM: a stereo SLAM system through the combination of points and line segments. arXiv preprint arXiv:1705.09479 (2017)

  13. Grisetti, G., Kummerle, R., Stachniss, C., Burgard, W.: A tutorial on graph-based SLAM. IEEE Intell. Transp. Syst. Mag. 2(4), 31–43 (2010)

    Article  Google Scholar 

  14. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, New York (2003)

    MATH  Google Scholar 

  15. Kaess, M.: Simultaneous localization and mapping with infinite planes. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 4605–4611. IEEE (2015)

    Google Scholar 

  16. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g\(^2\)o: a general framework for graph optimization. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 3607–3613. IEEE (2011)

    Google Scholar 

  17. Lemaire, T., Lacroix, S.: Monocular-vision based SLAM using line segments. In: 2007 IEEE International Conference on Robotics and Automation, pp. 2791–2796. IEEE (2007)

    Google Scholar 

  18. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  19. McCormac, J., Handa, A., Davison, A., Leutenegger, S.: SemanticFusion: dense 3D semantic mapping with convolutional neural networks. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 4628–4635. IEEE (2017)

    Google Scholar 

  20. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: ORB-SLAM: a versatile and accurate monocular slam system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  21. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  22. Newcombe, R.A., et al.: KinectFusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 127–136. IEEE (2011)

    Google Scholar 

  23. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2320–2327. IEEE (2011)

    Google Scholar 

  24. Prisacariu, V.A., et al.: InfiniTAM v3: a framework for large-scale 3D reconstruction with loop closure. arXiv preprint arXiv:1708.00783 (2017)

  25. Pumarola, A., Vakhitov, A., Agudo, A., Sanfeliu, A., Moreno-Noguer, F.: PL-SLAM: real-time monocular visual SLAM with points and lines. In: Proceedings of the International Conference on Robotics and Automation (ICRA). IEEE (2017)

    Google Scholar 

  26. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems (NIPS) (2015)

    Google Scholar 

  27. Rubino, C., Crocco, M., Bue, A.D.: 3D object localisation from multi-view image detections. IEEE Trans. Pattern Anal. Mach. Intell. PP(99), 1 (2018). https://doi.org/10.1109/TPAMI.2017.2701373

  28. Salas-Moreno, R.F., Glocken, B., Kelly, P.H.J., Davison, A.J.: Dense planar SLAM. In: 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 157–164, September 2014. https://doi.org/10.1109/ISMAR.2014.6948422

  29. Salas-Moreno, R.F., Newcombe, R.A., Strasdat, H., Kelly, P.H.J., Davison, A.J.: SLAM++: simultaneous localisation and mapping at the level of objects. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2013, pp. 1352–1359 (2013). https://doi.org/10.1109/CVPR.2013.178

  30. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: Proceedings of the International Conference on Intelligent Robot Systems (IROS), October 2012

    Google Scholar 

  31. Sünderhauf, N., Milford, M.: Dual quadrics from object detection boundingboxes as landmark representations in SLAM. Preprints arXiv:1708.00965, August 2017

  32. Sünderhauf, N., Pham, T.T., Latif, Y., Milford, M., Reid, I.: Meaningful maps with object-oriented semantic mapping. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5079–5085. IEEE (2017)

    Google Scholar 

  33. Taguchi, Y., Jian, Y.D., Ramalingam, S., Feng, C.: Point-plane SLAM for hand-held 3D sensors. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 5182–5189. IEEE (2013)

    Google Scholar 

  34. Trevor, A., Gedikli, S., Rusu, R., Christensen, H.: Efficient organized point cloud segmentation with connected components. In: 3rd Workshop on Semantic Perception Mapping and Exploration (SPME), Karlsruhe, Germany (2013)

    Google Scholar 

  35. Yang, S., Song, Y., Kaess, M., Scherer, S.: Pop-up SLAM: semantic monocular plane SLAM for low-texture environments. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1222–1229. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Hosseinzadeh .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 39976 KB)

Supplementary material 2 (pdf 4841 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hosseinzadeh, M., Latif, Y., Pham, T., Suenderhauf, N., Reid, I. (2019). Structure Aware SLAM Using Quadrics and Planes. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11363. Springer, Cham. https://doi.org/10.1007/978-3-030-20893-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20893-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20892-9

  • Online ISBN: 978-3-030-20893-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics