Skip to main content

Mass Transfer in the Gas Phase

  • Chapter
  • First Online:
  • 341 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

This chapter presents detailed discussion on simultaneous heat and mass transfer phenomenon for heat transfer augmentation. The mass transfer resistance in gas phase for different processes like condensation with noncondensable gases, evaporation of water into airstream, dehumidification in finned tube heat exchangers and water film enhancement of finned tube exchanger has been presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abid MF, Abdullah AN, Ahmad KM (2012) An experimental study of simultaneous heat and mass transfer in falling film and bubble mode absorbers. Petrol Sci Technol 30(5):467–477

    Article  Google Scholar 

  • Azizi Y, Bennacer R, Benhamou B, Galanis N, El-Ganaoui M (2007) Buoyancy effects on upward and downward laminar mixed convection heat and mass transfer in a vertical channel. Int J Numer Meth Heat Fluid Flow 17(3):333–353

    Article  Google Scholar 

  • Bassuoni M (2011) An experimental study of structured packing dehumidifier/regenerator operating with liquid desiccant. Energy 36(5):2628–2638

    Article  Google Scholar 

  • Bentley JM, Snyder TK, Glicksman LR, Rohsenow WM (1978) An experimental study of a unique wet/dry surface for cooling towers. J Heat Transf 100:520–526

    Google Scholar 

  • Boukadida N, Nasrallah SB (2001) Mass and heat transfer during water evaporation in laminar flow inside a rectangular channel—validity of heat and mass transfer analogy. Int J Therm Sci 40(1):67–81

    Article  Google Scholar 

  • Chandrasekar M, Suresh S (2009) A review on the mechanisms of heat transport in nanofluids. Heat Transf Eng 30(14):1136–1150

    Article  Google Scholar 

  • Chow LC, Chung JN (1983) Evaporation of water into a laminar stream of air and superheated steam. Int J Heat Mass Transf 26(3):373–380

    Article  MATH  Google Scholar 

  • Chung TW, Ghosh TK, Hines AL (1996) Comparison between random and structured packings for dehumidification of air by lithium chloride solutions in a packed column and their heat and mass transfer correlations. Ind Eng Chem Res 35(1):192–198

    Article  Google Scholar 

  • Duryodhan VS, Singh A, Singh SG, Agrawal A (2015) Convective heat transfer in diverging and converging micro-channels. Int J Heat Mass Transf 80:424–438

    Article  Google Scholar 

  • Fumo N, Goswami D (2002) Study of an aqueous lithium chloride desiccant system: air dehumidification and desiccant regeneration. Sol Energy 72(4):351–361

    Article  Google Scholar 

  • Gao W, Liu J, Cheng Y, Zhang X (2012) Experimental investigation on the heat and mass transfer between air and liquid desiccant in a cross-flow dehumidifier. Renew Energy 37(1):117–123

    Article  Google Scholar 

  • Godson L, Raja B, Lal DM, Wongwises S (2010) Enhancement of heat transfer using nanofluids e an overview. Renew Sust Energ Rev 14(2):629–641

    Article  Google Scholar 

  • Grossman G (1983) Simultaneous heat and mass transfer in film absorption under laminar flow. Int J Heat Mass Transf 26(3):357–371

    Article  Google Scholar 

  • Gu LD, Min JC, Tang YC (2018) Effects of mass transfer on heat and mass transfer characteristics between water surface and airstream. Int J Heat Mass Transf 122:1093–1102

    Article  Google Scholar 

  • Hoffmann L, Greiter I, Wagner A (1996) Experimental investigation of heat transfer in a horizontal tube falling film absorber with aqueous solutions of LiBr with and without surfactants. Int J Refrig 19(5):331–341

    Article  Google Scholar 

  • Huang K, Deng X (2018) Enhanced heat mass Transf of falling liquid films in vertical tubes. J Enhanc Heat Transf 25(1):79

    Article  Google Scholar 

  • Huang WJ, Deng XH, Zhou SH (2006) Mechanism of heat transfer enhancement for converging-diverging tube. J Fluid Machinery 2020

    Google Scholar 

  • Hudina M, Sommer A (1988) Heat transfer and pressure drop measurements on tube and fin heat exchangers. In: Shah RK, Ganie EN, Yang KT (eds) Proc. 1st World Conf. on experimental heat transfer. Fluid mechanics and thermodynamics. Elsevier Science, New York, pp 1393–1400

    Google Scholar 

  • Isshiki N, Ogawa K, Sasaki N, Funaro Y (1991) R & D of constant curvature surface (CCS) tubes for absorption heat exchangers. Proc Absorp Heat Pump Conf, Tokyo, Japan, pp 377–382

    Google Scholar 

  • Iskra CR, Simonson CJ (2007) Convective mass transfer coefficient for a hydrodynamically developed airflow in a short rectangular duct. Int J Heat Mass Transf 50(11–12):2376–2393

    Article  Google Scholar 

  • Jang JH, Yan WM, huang CC (2005) Mixed convection heat transfer enhancement through film evaporation in inclined square ducts. Int J Heat Mass Transf 48(11):2117–2125

    Article  MATH  Google Scholar 

  • Johnson BM, Bartz JA, Alleman RT, Fricke HD, Price RE, Mcllroy K (1981) Development of an advanced concept of dry/wet cooling for power plants. Battelle Pacific Northwest Laboratories Report BN-SA-1296. Also presented at the American Power Conf April 27-29, Chicago, IL

    Google Scholar 

  • Jung H, Hwang J, Jeon C (2014) An experimental study on performance improvement for an air source heat pump by alternate defrosting of outdoor heat exchanger. Int J Air-Conditioning Refrig 22(03):1450017

    Article  Google Scholar 

  • Kim JK, Park CW, Kang YT (2003) The effect of micro-scale surface treatment on heat and mass transfer performance for a falling film H2O/LiBr absorber. Int J Refrig 26(5):575–585

    Article  Google Scholar 

  • Koronaki IP, Christodoulaki RI, Papaefthimiou VD, Rogdakis ED (2013) Thermodynamic analysis of a counter flow adiabatic dehumidifier with different liquid desiccant materials. Appl Therm Eng 50(1):361–373

    Article  Google Scholar 

  • Kreid DK, Johnson BM, Faletti DW (1978) Approximate analysis of heat transfer from the surface of a wet finned heat exchanger. ASME paper 78-HT-26, ASME, New York.

    Google Scholar 

  • Kreid DK, Hauser SG, Johnson BM (1983a) Investigation of combined heat and mass transfer from a wet heat exchanger. Part I: Analytical formulation. Proc ASME-JSME Joint Thermal Eng Conf. I:517–524

    Google Scholar 

  • Kreid DK, Hauser SG, Johnson BM (1983b) Investigation of combined heat and mass transfer from a wet heat exchanger. Part 2: Experimental results. Proc ASME-JSME Joint Thermal Eng Conf 1:525–534

    Google Scholar 

  • Kulankara S, Herold KE (2002) Surface tension of aqueous lithium bromide with heat/mass transfer enhancement additives: the effect of additive vapour transport. Int J Refrig 25(3):383–389

    Article  Google Scholar 

  • Kumar M, Ojha CSP, Saini JS (2014) Investigation of evaporative mass transfer with turbulent-forced convection air flow over roughness elements. J Hydrol Eng 19(11):06014004

    Article  Google Scholar 

  • Lee JH, Lee SH, Choi CJ, Jang SP, Choi SUS (2010) A review of thermal conductivity data, mechanisms and models for nanofluids. Int J Micro-nano Scale Transp 1(4):269–322

    Article  Google Scholar 

  • Lee JH, Jung CW, Chang YS, Chung JT, Kang YT (2016a) Nu and Sh correlations for LiCl solution and moist air in plate type dehumidifier. Int J Heat Mass Transf 100:433–444

    Article  Google Scholar 

  • Lee JH, Ro GH, Kang YT, Chang YS, Kim SC, Kim YL (2016b) Combined heat and mass transfer analysis for LiCl dehumidification process in a plate type heat exchanger. Appl Therm Eng 96:250–257

    Article  Google Scholar 

  • Li W, Wu XY, Luo Z, Webb RL (2011) Falling water film evaporation on newly-designed enhanced tube bundles. Int J Heat Mass Transf 54(13–14):2990–2997

    Article  Google Scholar 

  • Liu X, Jiang Y, Qu K (2007) Heat and mass transfer model of cross flow liquid desiccant air dehumidifier/regenerator. Energy Convers Manag 48(2):546–554

    Article  Google Scholar 

  • Luan SD, Liu CH, Shen ZQ (1993) An experimental investigation on falling film gas carrying evaporation in vertical tube. J Chem Eng Chin Univ 7(3):221–226

    Google Scholar 

  • Ma X, Zhou XD, Lan Z, Song TY, Ji J (2007) Experimental investigation of enhancement of dropwise condensation heat transfer of steam-air mixture: falling droplet effect. J Enhan Heat Transf 14(4):295–305

    Article  Google Scholar 

  • Meyer T, Ziegler F (2014) Analytical solution for combined heat and mass transfer in laminar falling film absorption using first type boundary conditions at the interface. Int J Heat Mass Transf 73:141–151

    Article  Google Scholar 

  • Miller WA, Perez-Blanco H (1993) Vertical tube aqueous LiBr falling film absorption using advanced surfaces. Int Absorp Heat Pump Conf AES 31:185–202

    Google Scholar 

  • Mittermaier M, Schulze P, Ziegler F (2014) A numerical model for combined heat and mass transfer in a laminar liquid falling film with simplified hydrodynamics. Int J Heat Mass Transf 70:990–1002

    Article  Google Scholar 

  • Moon C, Bansal P, Jain S (2009) New mass transfer performance data of a cross-flow liquid desiccant dehumidification system. Int J Refrig 32(3):524–533

    Article  Google Scholar 

  • Ozerinç S, Kakaç S, Yazıcıoglu AG (2010) Enhanced thermal conductivity of nanofluids: a state of the art review. Microfluid Nanofluid 8(2):145–170

    Article  Google Scholar 

  • Pang C, Lee JW, Kang YT (2015) Review on combined heat and mass transfer characteristics in nanofluids. Int J Therm Sci 87:49–67

    Article  Google Scholar 

  • Park CW, Kim SS, Cho HC et al (2003) Experimental correlation of falling film absorption heat transfer on micro-scale hatched tubes. Int J Refrig 26(7):758–763

    Article  Google Scholar 

  • Pehlivan H (2013) Experimental investigation of convection heat transfer in converging–diverging wall channels. Int J Heat Mass Transf 66:128–138

    Article  Google Scholar 

  • Poós T, Varju E (2017) Dimensionless evaporation rate from free water surface at tubular artificial flow. Energy Procedia 112:366–373

    Article  Google Scholar 

  • Rahamah A, Elsayed M, Al-Najem N (1998) A numerical solution for cooling and dehumidification of air by a falling desiccant film in parallel flow. Renew Energy 13(3):305–322

    Article  Google Scholar 

  • Raimundo AM, Gaspar AR, Oliveira AVM, Quintela DA (2014) Wind tunnel measurements and numerical simulations of water evaporation in forced convection airflow. Int J Therm Sci 86:28–40

    Article  Google Scholar 

  • Schwartze JP, Brocker S (2000) The evaporation of water into air of different humidities and the inversion temperature phenomenon. Int J Heat Mass Transf 43(10):1791–1800

    Article  MATH  Google Scholar 

  • Senshu T, Hatada T, Ishibane K (1981) Heat mass transfer performance of air coolers under wet conditions. ASHRAE Trans 87(Part 2):109–115

    Google Scholar 

  • Sergis A, Hardalupas Y (2011) Anomalous heat transfer modes of nanofluids: a review based on statistical analysis. Nanoscale Res Lett 6(1):391–427

    Article  Google Scholar 

  • Sommer A (1984) Wasserverteilung aufuden Larnellen bespruhter FORGO-GLATT-Wurmetauscher, Beobachtungen and einem Plexiglas-Aluminum Modell. Report EIR-TM-23- 84-09, Wurenlingen

    Google Scholar 

  • Stegou-Sagia A (1996) An experimental study and a computer simulation of heat and mass transfer for three-dimensional humidification processes. Int J Numer Methods Biomed Eng 12(11):719–729

    MATH  Google Scholar 

  • Sun P, Lin Z (1993) Heat transfer of falling film in vertical tube with superimposed vapor flow. J Chem Eng (China) 5:12–15

    Google Scholar 

  • Talukdar P, Iskra CR, Simonson CJ (2008) Combined heat and mass transfer for laminar flow of moist air in a 3D rectangular duct: CFD simulation and validation with experimental data. Int J Heat Mass Transf 51(11):3091–3102

    Article  MATH  Google Scholar 

  • Tang R, Etzion Y (2004) Comparative studies on the water evaporation rate from a wetted surface and that from a free water surface. Build Environ 39(1):77–86

    Article  Google Scholar 

  • Tian H, Liu ZY, Ma YT (2012) Experimental research on falling film evaporating characteristic outside the horizontal enhanced tube. J Eng Thermophys 33(11):1924–1928

    Google Scholar 

  • Trisaksri V, Wongwises S (2007) Critical review of heat transfer characteristics of nanofluids. Renew Sust Energ Rev 11(3):512–523

    Article  Google Scholar 

  • Tsuda H, Perez-Blanco H (2001) An experimental study of a vibrating screen as means of absorption enhancement. Int J Heat Mass Transf. 44:4087–4094

    Article  Google Scholar 

  • Volchkov EP, Leontiev AI, Makarova SN (2007) Finding the inversion temperature for water evaporation into an air–steam mixture. Int J Heat Mass Transf 50(11):2101–2106

    Article  MATH  Google Scholar 

  • Wan Y, Ren C, Xing L, Yang Y (2017a) Analysis of heat and mass transfer characteristics in vertical plate channels with falling film evaporation under uniform heat flux/uniform wall temperature boundary conditions. Int J Heat Mass Transf 108:1279–1284

    Article  Google Scholar 

  • Wan Y, Ren C, Yang Y, Xing L (2017b) Study on average Nusselt and Sherwood numbers in vertical plate channels with falling water film evaporation. Int J Heat Mass Transf 110:783–788

    Article  Google Scholar 

  • Wang BX, Zhang JT, Peng XF (2000) Experimental study on the dryout heat flux of falling liquid film. Int J Heat Mass Trans 43:1897–1903

    Article  Google Scholar 

  • Wang C-C, Chiang C-S, Lu D-C (1997) Visual observation of two-phase flow pattern of R-22, R-134a, and R-407C in a 6.5-mm smooth tube. Exp Thermal Fluid Sci 15:395–405

    Article  Google Scholar 

  • Wang Y, Deng X, Li Z (2007) Compound heat transfer enhancement of converged-diverged tube supported by twisted-leaves. J Chem Ind Eng-Chn 58(9):2190

    Google Scholar 

  • Webb RL, Kim NY (2005) Principles of enhanced heat transfer. Taylor and Francis, New York

    Google Scholar 

  • Webb RL (1988) Performance evaluation criteria for enhanced surface geometries used in two-phase heat exchangers. In: Shah RK, Subbarao EC, Mashelkar RA (eds) Heat transfer equipment. Hemisphere Pub. Corp, Washington, DC, pp 697–706

    Google Scholar 

  • Webb RL (1991) Advances in shell side boiling of refrigerants. J. Institute of Refrigeration 87:75–86

    Google Scholar 

  • Webb RL, Perez-Blanco H (1986) Enhancement of combined heat and mass transfer in a vertical tube heat and mass exchanger. J Heat Trans 108:70–75

    Article  Google Scholar 

  • Webb RL, Wanniarachchi AS, Rudy TM (1980) The effect of noncondensible gases on the performance of an R-11 centrifugal water chiller condenser. ASHRAE Trans 86(Part 2):170–184

    Google Scholar 

  • Wei X, Duan B, Zhang X, Zhao Y, Yu M, Zheng Y (2017) Numerical simulation of heat and mass transfer in air-water direct contact using computational fluid dynamics. Procedia Eng 205 (Suppl C) 205:2537–2544

    Article  Google Scholar 

  • Wilke G, Herrmann G (1962) Ethylenebis (tri-phenyl-phosphine) nickel and analogous complexes. Angew Chem 74:693–694

    Article  Google Scholar 

  • Yang WJ, Clark DW (1975) Spray cooling of air-cooled compact heat exchangers. Int J Heat Mass Trans 18:311–317

    Article  Google Scholar 

  • Yang Z, Lin B, Zhang K, Lian Z (2015) Experimental study on mass transfer performances of the ultrasonic atomization liquid desiccant dehumidification system. Energ Buildings 93:126–136

    Article  Google Scholar 

  • Yin Y, Zheng B, Yang C, Zhang X (2015) A proposed compressed air drying method using pressurized liquid desiccant and experimental verification. Appl Energy 141:80–89

    Article  Google Scholar 

  • Yoshida T, Hyodo T (1970) Evaporation of water in air, humid air, and superheated steam. Ind Eng Chem Process Des Dev 9(2):207–214

    Article  Google Scholar 

  • Yoon JI, Kim E, Choi KH, Seol WS (2002) Heat transfer enhancement with a surfactant on horizontal bundle tubes of an absorber. Int J Heat Mass Trans 45:735–741

    Article  Google Scholar 

  • Yu W, France DM, Routbort JL, Choi SUS (2008) Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf Eng 29(5):432–460

    Article  Google Scholar 

  • Yuan ZX, Yan XT, Ma CF (2004) A study of coupled convective heat and mass transfer from thin water film to moist air flow. Int Commun Heat Mass Transf 31(2):291–301

    Article  Google Scholar 

  • Zhang LZ (2011) An analytical solution to heat and mass transfer in hollow fiber membrane contactors for liquid desiccant air dehumidification. J Heat Transf 133(9):92001

    Article  Google Scholar 

  • Zhang L, Hihara E, Matsuoka F, Dang C (2010) Experimental analysis of mass transfer in adiabatic structured packing dehumidifier/regenerator with liquid desiccant. Int J Heat Mass Transf 53(13):2856–2863

    Article  Google Scholar 

  • Zhang X, Wu J, Li Z (2019) Irreversibility characterization and analysis of coupled heat and mass transfer processes in an absorption system. Int J Heat Mass Transf 133:1121–1133

    Article  Google Scholar 

  • Zhao CY, Ji WT, Jin PH, Zhong YJ, Tao WQ (2018) Experimental study of the local and average falling film evaporation coefficients in a horizontal enhanced tube bundle using R134a. Appl Therm Eng 129:502–511

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, S.K., Ranjan, H., Emani, M.S., Bharti, A.K. (2020). Mass Transfer in the Gas Phase. In: Electric Fields, Additives and Simultaneous Heat and Mass Transfer in Heat Transfer Enhancement. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-20773-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20773-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20772-4

  • Online ISBN: 978-3-030-20773-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics