Skip to main content

Enhancement of Two-Phase Flow Using EHD Technique

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

The heat transfer augmentation in two-phase flow using EHD technique is presented in this chapter. The concepts of vapour space condensation, in-tube condensation, falling film evaporation, pool boiling, critical heat flux and convective vaporization with EHD technique are thoroughly elaborated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Al-Ahmadi A, Al-Dadah RK (2002) A new set of correlations for EHD condensation heat transfer of tubular systems. Appl Thermal Eng 22:1981–2001

    Article  Google Scholar 

  • Alhusseini AA, Hoke BC, Chen JC (1996) Critical heat flux in falling films undergoing nucleate boiling. In Chen JC (eds) Convective flow boiling. Taylor Francis: 339–344 (Proc. of Convective Flow Boiling Conj: in Banff, Canada, April 30–May 5, 1995)

    Google Scholar 

  • Bologa MK, Korovkin VP, Savin IK (1995) Mechanism of condensation heat transfer enhancement in an electric field and the role of capillary processes. Int J Heat Mass Transf 38(1):175–182

    Article  Google Scholar 

  • Bologa MK, Kozhevnikov IV, Mardarskii OI, Polikarpov AA (2012) Boiling heat transfer in the field of electric forces. Surf Eng Appl Electrochem 48(4):329–331

    Article  Google Scholar 

  • Boreyko JB, Chen CH (2010) Self-propelled jumping drops on superhydrophobic surfaces. Phys Fluids 22(9):091110

    Article  Google Scholar 

  • Boreyko JB, Chen CH (2013) Vapor chambers with jumping-drop liquid return from super-hydrophobic condensers. Int J Heat Mass Transf 61:409–418

    Article  Google Scholar 

  • Boreyko JB, Collier CP (2013) Delayed frost growth on jumping-drop superhydrophobic surfaces. ACS Nano 7(2):1618–1627

    Article  Google Scholar 

  • Boreyko JB, Zhao Y, Chen CH (2011) Planar jumping-drop thermal diodes. Appl Phys Lett 99(23):234105

    Article  Google Scholar 

  • Bryan JE, Seyed-Yagoobi Y (2001) Influence of flow regime, heat flux, and mass flux on electrohydrodynamically enhanced convective boiling. J Heat Transfer 123:355–367

    Article  Google Scholar 

  • Butt HJ, Untch MB, Golriz A, Pihan SA, Berger R (2011) Electric-field-induced condensation: an extension of the kelvin equation. Phys Rev E 83(6):061604

    Article  Google Scholar 

  • Carrica P, Di Marco P, Grassi W (1997) Nucleate pool boiling in the presence of an electric field: effect of subcooling and heat-up rate. Exp Thermal Fluid Sci 15(3):213–220

    Article  Google Scholar 

  • Cavallini A, Del Col D, Doretti L, Longo GA, Rossetto L (1997) Pressure drop during condensation and vaporization of refrigerants inside enhanced tubes. Heat Technol 15(1):3–10

    Google Scholar 

  • Cavallini A, Del Col D, Mancin S, Rossetto L (2006) Thermal performance of R-410A condensing in a microfin tube. In: Proc Int Refrig Conf R178

    Google Scholar 

  • Cerza M (1992) Nucleate boiling in thin falling liquid films. Pool and External Flow Boiling Conference, Santa Barbara: 459–466

    Google Scholar 

  • Chavez RL, Liu F, Feng JJ, Chen CH (2016) Capillary-inertial colloidal catapults upon drop coalescence. Appl Phys Lett 109(1):011601

    Article  Google Scholar 

  • Chen X, Ma R, Zhou H, Zhou X, Che L, Yao S, Wang Z (2013) Activating the microscale edge effect in a hierarchical surface for frosting suppression and defrosting promotion. Sci Rep 3:2515

    Article  Google Scholar 

  • Cheung K, Ohadi MM, Dessiatoun SV (1999) EHD-assistecl external condensation of R-134a on smooth horizontal and vertical tubes. Int J Heat Mass Transf 42:1747–1755

    Article  Google Scholar 

  • Cheung KH, Ohadi MM, Dessiatoun S (1995) Compound enhancement of boiling heat transfer of R-134a in a tube bundle. ASHRAE Trans Symp 101(Part 1):1009–1019

    Google Scholar 

  • Cho HJ, Mizerak JP, Wang EN (2015) Turning bubbles on and off during boiling using charged surfactants. Nature Communications 6:8599

    Article  Google Scholar 

  • Choi HY (1968) Electrohydrodynamic condensation heat transfer. J Heat Transf 90(1):98–102

    Article  Google Scholar 

  • Choi JY, Kedzierski MA, Domanski PA (2001) Generalized pressure drop correlation for evaporation and condensation in smooth and microfin tubes, proc. of IIF-IIR commission B1, Paderborn, Germany, B4: 9–16

    Google Scholar 

  • Chu RC, Nishio S, Tanasawa I (2001) Enhancement of condensation heat transfer on a finned condensation. Proc Third ASMEIJSME Thermal Eng Conf 3:47–53

    Google Scholar 

  • Chyu MC, Bergles AE, Mayinger F (1982) Enhancement of horizontal tube spray film evaporators, Proc. 7th international heat transfer con/, Munich, 6, 275–280

    Google Scholar 

  • Cooper P (1990) EHD enhancement of nucleate boiling. J Heat Transfer 112:458–464

    Article  Google Scholar 

  • Cooper P (1992) Practical design aspects of EHD heat transfer enhancement in evaporators. In ASHRAE Winter Meeting, Anaheim. CA, USA, 01/25–29/92: 445–454

    Google Scholar 

  • Cotton JS, Robinson AJ, Chang JS, Shoukri M (2008) Electrohydrodynamic enhancement of flow boiling in an eccentric horizontal cylindrical channel. J Enhanc Heat Transf 15(3):183–198

    Article  Google Scholar 

  • Damianidis C, Karayinnis T, Al-Dadah RK, James RW, Collins MW, Allen PHG (1992) EHD boiling enhancement in shell-and-tube evaporators and its application to refrigeration plants. ASH RAE Trans 98(Part 2):462–473

    Google Scholar 

  • Darabi J, Ohadi MM, Dessiatoun SV (2000a) Falling film and spray evaporation enhancement using an applied electric field. J Heat Transfer 122:741–748

    Article  Google Scholar 

  • Darabi J, Ohadi MM, Dessiatoun SV (2000b) Augmentation of thin falling-film evaporation on horizontal tubes using an applied electric field. J Heat Transfer 122:391–398

    Article  Google Scholar 

  • Darabi J, Ohadi MM, Dessiatoun SV (2000c) Compound augmentation of pool boiling on three selected commercial tubes. J Enhanced Heat Transfer 7:347

    Article  Google Scholar 

  • Di Marco P, Grassi W (2011) Effects of external electric field on pool boiling: comparison of terrestrial and microgravity data in the ARIEL experiment. Exp Thermal Fluid Sci 35(5):780–787

    Article  Google Scholar 

  • Di Marco P, Grassi W, Memoli G, Takamasa T, Tomiyama A, Hosokawa S (2003) Influence of electric field on single gas-bubble growth and detachment in microgravity. Int J Multiphase Flow 29(4):559–578

    Article  MATH  Google Scholar 

  • Didkovsky AB, Bologa MK (1981) Vapour film condensation heat transfer and hydrodynamics under the influence of an electric field. Int J Heat Mass Transf 24(5):811–819

    Article  Google Scholar 

  • Doretti L, Zilio C, Mancin S, Cavallini A (2013) Condensation flow patterns inside plain and microfin tubes: a review. Int J Refrig 36:567–587

    Article  Google Scholar 

  • Eckels SJ, Tesene BA (1999) A comparison of R-22, R-134A, R-410A and R-407C condensation performance in smooth and enhanced tubes, part I: heat transfer. ASHRAE Trans 105:428–441

    Google Scholar 

  • Gidwani A, Molki M, Ohadi MM (2002) EHD-enhanced condensation of alternative refrigerants in smooth and corrugated tubes. Int J HVAC & R Res 8(3):219–238

    Article  Google Scholar 

  • Goto M, Inoue N, Ishiwatari N (2001) Condensation and evaporation heat transfer of R-410A inside internally grooved horizontal tubes. Int J Refrig 24:628–638

    Article  Google Scholar 

  • Grassi W, Testi D, Saputelli M (2005a) EHD enhanced heat transfer in a vertical annulus. Int Commun Heat Mass Transf 32(6):748–757

    Article  Google Scholar 

  • Grassi W, Testi D, Saputelli M (2005b) Heat transfer enhancement in a vertical annulus by electrophoretic forces acting on a dielectric liquid. Int J Therm Sci 44(11):1072–1077

    Article  Google Scholar 

  • Grassi W, Testi D (2006) Heat transfer augmentation by ion injection in an annular duct. J Heat Transfer — Trans. ASME. 128:283–289

    Article  Google Scholar 

  • Han D, Lee KJ (2005) Experimental study on condensation heat transfer enhancement and pressure drop penalty factors in four microfin tubes. Int J Heat Mass Transfer 48:3804–3816

    Article  Google Scholar 

  • Haraguchi H, Koyama S, Esaki J, Fujii T (1993) Condensation heat transfer of refrigerants Hcfc134A, Hcfc123 and Hcfc22 in a horizontal smooth tube and a horizontal microfin tube, in proc. of 30th Natl. Symp. of Japan, Yokohama 343–345

    Google Scholar 

  • Holmes RE, Chapman AJ (1970) Condensation of Freon-114 in the presence of a strong nounniform alternating electric field. J Heat Transf Trans ASME 92:616–620

    Article  Google Scholar 

  • Houfuku M, Suzuki Y, Inui K (2001) High-performance, lightweight THERMOFIN tubes for air conditioners using alternative refrigerants. Hitachi Cable Review 2001:97–100

    Google Scholar 

  • Hu X, Jacobi AM (1996a) The lntertube falling film: part I-flow characteristics, mode transitions, and hysteresis. J Heat Transf 118:616–625

    Article  Google Scholar 

  • Hu X, Jacobi AM (1996b) The lntertube falling film: part 2-mode effects on sensible heat transfer to a falling liquid film. J Heat Transf 118:626–633

    Article  Google Scholar 

  • Jung D, An K, Park J (2004) Nucleate boiling heat transfer coefficients of HCFC22, HFC134a, HFC125, and HFC32 on various enhanced tubes. Int J Refrigeration 27:202–206

    Article  Google Scholar 

  • Karayiannis TG (1998) EHD boiling heat transfer enhancement of R 123 and Rl 1 on a tube bundle, of R-123 and their enhancement using the EHD technique. J Enhan Heat Transfer 2:209

    Google Scholar 

  • Kedzierski MA, Gonclaves JM (1999) Horizontal convective condensation of alternative refrigerants within a microfin tube. J Enhanc Heat Transf 6:161–178

    Article  Google Scholar 

  • Kim NH (2016) Condensation heat transfer and pressure drop of R-410a in 5.0-mm-od smooth or microfin tubes at low mass fluxes. J Enhanc Heat Transf 23(5):120–145

    Article  Google Scholar 

  • Kim MH, Shin JS (2005) Condensation heat transfer of R-22 and R-410A in horizontal smooth and microfin tubes. Int J Refrig 28:949–957

    Article  Google Scholar 

  • Kollera M, Grigull U (1969) The bouncing off phenomenon of droplets with condensation of mercury. Heat Mass Transf 2(1):31–35

    Google Scholar 

  • Kweon YC, Kim MH (2000) Experimental study on nucleate boiling enhancement and bubble dynamic behavior in saturated pool boiling using a non-uniform dc electric field. Int J Multiphase Flow 26(8):1351–1368

    Article  MATH  Google Scholar 

  • Liu F, Ghigliotti G, Feng JJ, Chen CH (2014) Numerical simulations of self-propelled jumping upon drop coalescence on non-wetting surfaces. J Fluid mechanics 752:39–65

    Article  Google Scholar 

  • Liu Z, Herman C, Mewes D (2006) Visualization of bubble detachment and coalescence under the influence of a nonuniform electric field. Exp Thermal Fluid Sci 31(2):151–163

    Article  Google Scholar 

  • Lv J, Song Y, Jiang L, Wang J (2014) Bio-inspired strategies for anti-icing. ACS Nano 8(4):3152–3169

    Article  Google Scholar 

  • Mahmoudi SR, Adamiak K, Castle GP (2014) Flattening of boiling curves at post-CHF regime in the presence of localized electrostatic fields. Int J Heat Mass Transf 68:203–210

    Article  Google Scholar 

  • McGranaghan GJ, Robinson AJ (2014) The mechanisms of heat transfer during convective boiling under the influence of AC electric fields. Int J Heat Mass Transf 73:376–388

    Article  Google Scholar 

  • Migliaccio CP, Garimella SV (2013) Evaporative heat transfer from an electro-wetted liquid ribbon on a heated substrate. Int J Heat Mass Transf 57(1):73–81

    Article  Google Scholar 

  • Miyara A, Otsubo Y (2001) Condensation heat transfer of herringbone micro fin tubes. Exp Heat Trans. Fluid mechanics, and thermodynamics 2001, Edzioni ETS, Pisa, Italy, pp 381-386

    Google Scholar 

  • Moeykens SA, Pate MB (1995) The effects of nozzle height and orifice Siz.E on spray evaporation heat transfer performance for a low-finned, triangular-pitch tube bundle with R- l 34a. ASHRAE Trans 101(2):420–433

    Google Scholar 

  • Moradian A, Saidi MS (2008) Electrohydrodynamically enhanced nucleation phenomenon: a theoretical study. J Enhanc Heat Transf 15(1):1–15

    Article  Google Scholar 

  • Newell TA, Shah RK (2001) An assessment of refrigerant heat transfer, pressure drop and void fraction effects in microfin tubes. Int J HVAC&R Res 7(2):125–153

    Article  Google Scholar 

  • Norris CE, Cotton JS, Shoukri M, Chang J-S, Smith-Pollard T (1999) Electrohydrodynamic effects on flow redistribution and convective boiling in horizontal concentric tubes under high inlet quality conditions. ASHRAE Trans 105(Part 1):222–236

    Google Scholar 

  • Nozu S, Katayama H, Nakata H, Honda H (1998) Condensation of refrigerant Cfc11 in horizontal microfin tubes (proposal of a correlation equation for frictional pressure gradient). Exp Thermal Fluid Sci 18:82–96

    Article  Google Scholar 

  • Nuinrich R (1996) Falling film evaporation of soluble mixtures. Convective Flow Boiling 335:125–135

    Google Scholar 

  • Ogata J, Iwafuji Y, Shimada Y, Yamaziki T (1992) Boiling heat transfer enhancement in tubebundle evaporator utilizing electric field effects. ASHRAE Trans 98(Part 2):435–444

    Google Scholar 

  • Oh S-D, Kwak HY (2000) A study of bubble behavior and boiling heat transfer enhancement under electric field. Heat Transfer Eng 21(4):33–45

    Article  Google Scholar 

  • Ohadi M, Faani M, Papar R, Radermacher R, Ng T (1992) EHD heat transfer enhancement of shell-side boiling heat transfer coefficients of R-123/oil mixture. ASHRAE Trans 98(Part 2):424–434

    Google Scholar 

  • Pandey V, Biswas G, Dalal A (2016) Effect of superheat and electric field on saturated film boiling. Physics of Fluids 28(5):052102

    Article  Google Scholar 

  • Papar RA, Ohadi MM, Kumar A, Ansari AI (1993) Effect of electrode geometry on EHD enhanced boiling of R-123/oil mixture. ASHRAE Trans 99(Part 1):1237–1243

    Google Scholar 

  • Preston DJ, Miljkovic N, Enright R, Wang EN (2014) ΔV Ē. J Heat Transf 136:080909–080901

    Article  Google Scholar 

  • Quan X, Gao M, Cheng P, Li J (2015) An experimental investigation of pool boiling heat transfer on smooth/rib surfaces under an electric field. Int J Heat Mass Transf 85:595–608

    Article  Google Scholar 

  • Rohsenow WM (1952) A method of correlating heat transfer data for surface boiling of liquids. ASME Trans 74:969–976

    Google Scholar 

  • Schweizer N, Di Marco P, Stephan P (2013) Investigation of wall temperature and heat flux distribution during nucleate boiling in the presence of an electric field and in variable gravity. Exp Thermal Fluid Sci 44:419–430

    Article  Google Scholar 

  • Seth AK, Lee L (1974) The effect of an electric field in the presence of noncondensable gas on film condensation heat transfer. J Heat Transf 96(2):257–258

    Article  Google Scholar 

  • Shahriari A, Birbarah P, Oh J, Miljkovic N, Bahadur V (2017) Electric field–based control and enhancement of boiling and condensation. Nanosc Microsc Thermo-Phys Eng 21(2):102–121

    Article  Google Scholar 

  • Sheikhbahai M, Esfahany MN, Etesami N (2012) Experimental investigation of pool boiling of Fe3O4/ethylene glycol–water nanofluid in electric field. Int J Therm Sci 62:149–153

    Article  Google Scholar 

  • Siedel S, Cioulachtjian S, Robinson AJ, Bonjour J (2011) Electric field effects during nucleate boiling from an artificial nucleation site. Exp Thermal Fluid Sci 35(5):762–771

    Article  Google Scholar 

  • Singh A, Ohadi M, Dessiatoun S (1997) EHD enhancement of in-tube condensation heat transfer of alternate refrigerant, R-134a. ASHRAE Trans 103(1):97–100

    Google Scholar 

  • Singh A, Ohadi MM, Dessiatoun S (1995) EHD-enhanced boiling of R-123 over commercially available enhanced tubes. J Heat Transfer 117:1070–1073

    Article  Google Scholar 

  • Singh A, Ohadi MM, Dessiatoun S, Chu W (1994) In-tube boiling heat transfer enhancement of R-123 using the EHD technique. ASHRAE Trans 100(Part 2):818–825

    Google Scholar 

  • Sunada K, Yabe A, Taketani T, Yoshizawa Y (1991) Experimental study of EHD pseudo-dropwise condensation. Proc ASME/JSME Therm Eng 3:61–67

    Google Scholar 

  • Tang L, Ohadi MM, Johnson AT (2000a) Flow condensation in smooth and micro-fin tubes with HCFC-22, HFC-134a and HFC-410 refrigerants part 11: design equations. J Enhan Heat Trans 7(5):311–326

    Article  Google Scholar 

  • Tang L, Ohadi MM, Johnson AT (2000b) Flow condensation in smooth and micro-fin tubes with HCFC-22, HFC-134a and HFC-410A refrigerants part 1: experimental results. J Enhan Heat Trans 7(5):289–310

    Article  Google Scholar 

  • Takano K, Tanasawa I, Nishio S (1996) Enhancement of evaporation of a liquid droplet using EHD effect: criteria for instability of gas-liquid interface under electric field. J Enhan Heat Trans 3(1):72

    Article  Google Scholar 

  • Takata Y, Shirakawa H, Tanaka K, Ito T (2003) Numerical study on motion of a single bubble exerted by non-uniform electric field. Int J Transp Phenom 5:247–258

    Google Scholar 

  • Ulucakli E (1996) Heat transfer in a subcooled falling liquid film. In Chen JC (eds) Convective flow boiling. Taylor & Francis pp. 329-334 (proc. c,f convective flow boiling Conf in ban Canada, April 30–May 5, 1995)

    Google Scholar 

  • Velkoff HR, Miller JH (1965) Condensation of vapor on a vertical plate with a transverse electrostatic field. J Heat Transf 87(2):197–201

    Article  Google Scholar 

  • Verplaetsen FM, Berghmans JA (1999) Film boiling of an electrically insulating fluid in the presence of an electric field. Heat Mass Transf 35(3):235–241

    Article  Google Scholar 

  • Wang P, Lewin PL, Swaffield DJ, Chen G (2009) Electric field effects on boiling heat transfer of liquid nitrogen. Cryogenics 49(8):379–389

    Article  Google Scholar 

  • Wang Q, Yao X, Liu H, Quéré D, Jiang L (2015) Self-removal of condensed water on the legs of water striders. Proc Natl Acad Sci 112(30):9247–9252

    Article  Google Scholar 

  • Watson GS, Schwarzkopf L, Cribb BW, Myhra S, Gellender M, Watson JA (2015) Removal mechanisms of dew via self-propulsion off the gecko skin. J R Soc Interface 12(105):20141396

    Article  Google Scholar 

  • Wawzyniak M, Seyed-Yagoobi J (1996) Experimental study of electrohydrodynamically augmented condensation heat transfer on a smooth and an enhanced tube. J Heat Transfer 118:499–501

    Article  Google Scholar 

  • Yabe A (1991) Active heat transfer enhancement by applying electric fields. In: Proc. third ASME/JSME thermal Eng. C01~f. 3, xv-xxiii

    Google Scholar 

  • Yamashita K, Kumagai M, Sekita S, Yabe A, Taketani T, Kikuchi K (1991) Heat transfer characteristics of an EHD condenser. Proc. Third ASME/JSME Joint Thermal Eng. Conj, Reno, Nevada, pp 61–67

    Google Scholar 

  • Yamashita K, Yabe A (1997) Electrohydrodynamic enhancement of falling film evaporation heat transfer and its long-term effect on heat exchangers. J. Heat Transfer 119(2):339–347

    Article  Google Scholar 

  • Yan YY, Neve RS, Allen PHG (1996) EHD effects on nucleate boiling at passively enhanced surfaces. Exp Heat Transfer 9(3):195–212

    Article  Google Scholar 

  • Zaghdoudi MC, Lallemand M (1999) Analysis of the polarity influence on nucleate pool boiling under a DC electric field. J Heat Transf 121(4):856–864

    Article  Google Scholar 

  • Zaghdoudi MC, Lallemand M (2005) Pool boiling heat transfer enhancement by means of high DC electric field. Arab J Sci Eng 30(2):112–125

    Google Scholar 

  • Zeng X, Chyu M-C, Ayub ZH (1997) Performance of nozzle-sprayed Ammonia evaporator with square-pitch plain-tube bundle. ASH RAE Trans 03(2), Paper):4059

    Google Scholar 

  • Zeng X, Chyu M-C, Ayub ZH (1998) Ammonia spray evaporation heat transfer performance of single low-fin and corrugated tubes. ASHRAE Trans 104(1): Paper SF-98-15-2 (4109)

    Google Scholar 

  • Zhang K, Liu F, Williams AJ, Qu X, Feng JJ, Chen CH (2015) Self-propelled droplet removal from hydrophobic fiber-based coalescers. Phys Rev Lett 115(7):074502

    Article  Google Scholar 

  • Zhang Q, He M, Chen J, Wang J, Song Y, Jiang L (2013) Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets. Chem Commun 49(40):4516–4518

    Article  Google Scholar 

  • Zhang HB, Yan YY, Zu YQ (2010) Numerical modelling of EHD effects on heat transfer and bubble shapes of nucleate boiling. Appl Math Model 34(3):626–638

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, S.K., Ranjan, H., Emani, M.S., Bharti, A.K. (2020). Enhancement of Two-Phase Flow Using EHD Technique. In: Electric Fields, Additives and Simultaneous Heat and Mass Transfer in Heat Transfer Enhancement. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-20773-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20773-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20772-4

  • Online ISBN: 978-3-030-20773-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics