Skip to main content

Flow Boiling Enhancement Techniques

  • Chapter
  • First Online:
Two-Phase Heat Transfer Enhancement

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

  • 495 Accesses

Abstract

This chapter has started with the introduction to flow boiling enhancement techniques. Thereafter, the chapter runs through the fundamentals, flow patterns, thermal convection and pressure drop and flow orientation. Tube bundles, CHF and microfin tubes have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul K, Wang CC (2016) Investigation of thermal-hydrodynamic heat transfer performance of R-1234ZE and R-134a refrigerants in a micro-fin and smooth tube. J Enhanc Heat Transf 23(3):221

    Article  Google Scholar 

  • Agrawal KN, Varma HK, Lal S (1982) Pressure drop during forced convection boiling of R-12 under swirl flow. J Heat Transf 104(4):758–762

    Article  Google Scholar 

  • Agrawal KN, Varma HK, Lal S (1986) Heat transfer during forced convection boiling of R-12 under swirl flow. J Heat Transf 108(3):567–573

    Article  Google Scholar 

  • Akhanda MA, James DD (1991) An experimental study of the relative effects of transverse and longitudinal ribbing of the heat transfer surface in forced convective boiling. J Heat Transf 113(1):209–215

    Article  Google Scholar 

  • Antonelli R, O’Neill PS (1981) Design and application considerations for heat exchangers with enhanced boiling surfaces. Paper presented at international conference on advances in heat exchangers, Dubrovnik, Yugoslavia

    Google Scholar 

  • Arai N, Fukushima T, Arai A, Nakajima T, Fujie K, Nakayama Y (1977) Heat transfer tubes enhancing boiling and condensation in heat exchanger of a refrigerating machine. ASHRAE Trans 83:58–70

    Google Scholar 

  • Azer NZ, Sivakumar V (1984) Enhancement of saturated boiling heat transfer by internally finned tubes. ASHRAE Trans 90(1A):58–73

    Google Scholar 

  • Baker O (1954), Simultaneous flow of oil and gas: A report on Magnolia's research on two-phase pipeline design, Oil Gas J 26(5):185–195

    Google Scholar 

  • Bao ZY, Fletcher DF, Haynes BS (2000) Flow boiling heat transfer of Freon R11 and HCFC123 in narrow passages. Int J Heat Mass Transf 43(18):3347–3358

    Article  Google Scholar 

  • Bennett DL, Chen JC (1980) Forced convective boiling in vertical tubes for saturated pure components and binary mixtures. AICHE J 26(3):454–461

    Article  Google Scholar 

  • Bergles AE, Chyu MC (1982) Characteristics of nucleate pool boiling from porous metallic coatings. J Heat Transf 104:279–285

    Article  Google Scholar 

  • Bergles AE, Fuller WD, Hynek SJ (1971) Dispersed flow film boiling of nitrogen with swirl flow. Int J Heat Mass Transf 14(9):1343–1354

    Article  Google Scholar 

  • Bhatia RS, Webb RL (2001) Numerical study of turbulent flow and heat transfer in micro-fin tubes—part 2, parametric study. J Enhanc Heat Transf 8(5)

    Article  Google Scholar 

  • Blatt TA, Adt RR (1963) The effects of twisted tape swirl generators on the heat transfer rate and pressure drop of boiling Freon 11 and water. In: ASME Paper No. ASME-63-WA-42

    Google Scholar 

  • Boling C, Donovan WJ, Decker AS (1953) Heat transfer of evaporating freon with inner-fin tubing. Refrig Eng 61:1338–1340

    Google Scholar 

  • Brognaux LJ, Webb RL, Chamra LM, Chung BY (1997) Single-phase heat transfer in micro-fin tubes. Int J Heat Mass Transf 40(18):4345–4357

    Article  Google Scholar 

  • Bukin VG, Danilova GN, Dyundin VA (1982) Heat transfer from Freons in a film flowing over bundles of horizontal tubes that carry a porous coating. Heat Transf Soviet Res 14(2):98–103

    Google Scholar 

  • Campolunghi F, Cumo M, Ferrari G, Palazzi G (1976) Full scale tests and thermal design of once-through steam generators. In: AIChE paper presented at 16th national heat transfer conference, St. Louis, MO

    Google Scholar 

  • Carey VP (1992) Liquid-vapor phase-change phenomena: an introduction to the thermodynamics of vaporization and condensation processes in heat transfer equipment. Hemisphere, Washington, DC

    Google Scholar 

  • Carey VP, Shah RK (1988) Design of compact and enhanced heat exchangers for liquid-vapor phase-change applications. In: Two-phase flow heat exchangers. Springer, Dordrecht, pp 909–968

    Chapter  Google Scholar 

  • Carnavos TC (1980) Heat transfer performance of internally finned tubes in turbulent flow. Heat Transf Eng 1(4):32–37

    Article  Google Scholar 

  • Cavallini A, Del Col D, Doretti L, Longo GA, Rossetto L (1998) Refrigerant vaporisation inside enhanced tubes: a heat transfer model. In Eurotherm seminar, pp 222–231

    Google Scholar 

  • Cavallini A, Del Col D, Doretti L, Longo GA, Rossetto L (2000) Heat transfer and pressure drop during condensation of refrigerants inside horizontal enhanced tubes. Int J Refrig 23(1):4–25

    Article  Google Scholar 

  • Celata GP, Cumo M, Mariani A (1994) Enhancement of CHF water subcooled flow boiling in tubes using helically coiled wires. Int J Heat Mass Transf 37(1):53–67

    Article  Google Scholar 

  • Chamra LM, Webb RL (1995) Condensation and evaporation in micro-fin tubes at equal saturation temperatures. J Enhanc Heat Transf 2(3):219

    Article  Google Scholar 

  • Chamra LM, Webb RL, Randlett MR (1996) Advanced micro-fin tubes for evaporation. Int J Heat Mass Transf 39(9):1827–1838

    Article  Google Scholar 

  • Chen JC (1966) Correlation for boiling heat transfer to saturated fluids in convective flow. Indust Eng Chem Process Des Dev 5(3):322–329

    Article  Google Scholar 

  • Chen T, Luo YS, Zheng J, Bi Q (2000) Boiling heat transfer and frictional pressure drop in internally rebbed tubes at high pressures. In: Symposium on energy engineering in the 21st century, Hong Kong, pp 393–398

    Google Scholar 

  • Chen T-K, Chen X-Z, Chen X-J (1992) Boiling heat transfer and frictional pressure drop in internally ribbed tubes. In: Chen X-J, Vezirolu TN, Tien CL (eds) Multiphase flow and heat transfer: second international symposium, vol 1. Hemisphere Pub. Corp., New York, pp 621–629

    Google Scholar 

  • Chisholm D (1967) A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow. Int J Heat Mass Transf 10(12):1767–1778

    Article  Google Scholar 

  • Chun KR, Seban RA (1971) Heat transfer to evaporating liquid films. J Heat Transf 93:391–396

    Article  Google Scholar 

  • Chyu MC, Bergles AE (1985) Enhancement of horizontal tube spray film evaporators by structured surfaces. Adv Enhanced Heat Transf 43:39–47

    Google Scholar 

  • Chyu MC, Bergles AE (1989) Horizontal-tube falling-film evaporation with structured surfaces. J Heat Transf 111(2):518–524

    Article  Google Scholar 

  • Conklin JC, Vineyard EA (1992) Flow boiling enhancement of R22 and a nonazeotropic mixture of R143a and R124 using perforated foils. Oak Ridge National Lab, Oak Ridge, TN

    Google Scholar 

  • Conti RJ (1978) Experimental investigation of horizontal tube ammonia film evaporators with small temperature differentials. In: Proceedings of the 5th Ocean Thermal Energy Conversion (OTEC)

    Google Scholar 

  • Cooper MG (1984) Saturation nucleate pool boiling—a simple correlation. Chem E Symp Ser 86:786

    Google Scholar 

  • Cornwell K, Scoones DJ (1988) Analysis of low-quality boiling on plain and low-finned tube bundles. Presented at second UK heat transfer conference, vol 1, pp 21–32

    Google Scholar 

  • Crain Jr B (1973) Forced convection heat transfer to a two-phase mixture of water and steam in a helical coil. Doctoral dissertation, Oklahoma State University

    Google Scholar 

  • Cui S, Tan Y, Lu Y (1992) Heat transfer and flow resistance of R-502 flow boiling inside horizontal ISF tubes. In: Multiphase flow and heat transfer: second international symposium, vol 1. Hemisphere, New York, pp 662–670

    Google Scholar 

  • Cui W, Mungai SK, Wilson C, Ma H, Li B (2016) Subcooled flow boiling on a two-step electrodeposited copper porous surface. J Enhanc Heat Transf 23(2):91

    Article  Google Scholar 

  • Cumo M, Farello GE, Ferrari G, Palazzi G (1974) The influence of twisted tapes in subcritical, once-through vapor generators in counter flow. J Heat Transf 96(3):365–370

    Article  Google Scholar 

  • Czikk AM, Gottzmann CF, Ragi EG, Withers JG, Habdas EP (1970) Performance of advanced heat transfer tubes in refrigerant-flooded liquid coolers. ASHRAE Trans 76:96–107

    Google Scholar 

  • Czikk AM, O’Neill PS, Gottzmann CF (1981) Nucleate pool boiling from porous metal films effect of primary variables. Adv Heat Tran 18:109–122

    Google Scholar 

  • Del Col D, Webb RL, Narayanamurthy R (2002) Heat transfer mechanisms for condensation and vaporization inside a microfin tube. J Enhanc Heat Transf 9(1)

    Google Scholar 

  • Dong F, Cao T, Hou L, Ni J (2019) Optimization study of artificial cavities on subcooled flow boiling performance of water in a horizontal simulated engine cooling passage. J Enhanc Heat Transf 26(1):37

    Article  Google Scholar 

  • Ebisu T (1999) Evaporation and condensation heat transfer enhancement for alternative refrigerants used in air-conditioning machines. In: Heat transfer enhancement heat exchangers. Springer, Dordrecht, pp 579–600

    Chapter  Google Scholar 

  • Eckels SJ, Pate MB (1991) In-tube evaporation and condensation of refrigerant-lubricant mixtures of HFC-134a and CFC-12. ASHRAE Trans 97:62–70

    Google Scholar 

  • Fagerholm NE, Kivioja K, Ghazanfari AR, Jaervinen E (1985) Using structured surfaces to enhance heat transfer in falling film flow. NASA STI/Recon Technical Report No. 87

    Google Scholar 

  • Fujie K, Itoh N, Innami T, Kimura H, Nakayama N, Yanugidi T (1977) Heat transfer pipe. US Patent 4,044,797, assigned to Hitachi Ltd

    Google Scholar 

  • Fujita Y (1998) Boiling and evaporation of falling film on horizontal tubes and its enhancement on grooved tubes. In: Kakac S, Bergles AE, Mayinger F, Yuncu H (eds) Heat Transfer Enhancement of Heat Exchangers. Kluwer Academic, Dordrecht, 3259–3346

    Google Scholar 

  • Fujita Y (1999) Boiling and evaporation of falling film on horizontal tubes and its enhancement on grooved tubes. In: Heat transfer enhanced heat exchangers. Springer, Dordrecht, pp 325–346

    Chapter  Google Scholar 

  • Fujita Y, Ohta H, Hidaka S, Nishikawa K (1986) Nucleate boiling heat transfer on horizontal tubes in bundles. In: Proceedings of 8th Int Heat Transfer Conf, pp 2131–2136

    Google Scholar 

  • Fujita Y, Yang Y, Fujita N (2002) Flow boiling heat transfer and pressure drop in uniformly heated small tubes. In: Heat transfer 2002, 12th international heat transfer conference, vol 3, pp 743–748

    Google Scholar 

  • Gambill WR (1963) Generalized prediction of burnout heat flux for flowing, subcooled, wetting liquids. Chem Eng Prog Symp Ser 59(41):71–87

    Google Scholar 

  • Gambill WR (1965) Subcooled swirl-flow boiling and burnout with electrically heated twisted Tapes and Zero Wall Flux. J Heat Transf 87(3):342–348

    Article  Google Scholar 

  • Gambill WR, Bundy RD, Wansbrough RW (1960) Heat transfer, burnout, and pressure drop for water in swirl flow through tubes with internal twisted tapes. Oak Ridge National Lab, Oak Ridge

    Google Scholar 

  • Gan YP, Chen Q, Yuan XY, Tian SR (1993) An experimental study of nucleate boiling heat transfer from flame spraying surface of tube bundle in R113/R11-oil mixtures. In: Experimental heat transfer, fluid mechanics, and thermodynamics, p 1226

    Article  Google Scholar 

  • Gorenflo D (2001) State of the art in pool boiling heat transfer of new refrigerants. Int J Refrig 24(1):6–14

    Article  MathSciNet  Google Scholar 

  • Goto M, Inoue N, Ishiwatari N (2001) Condensation and evaporation heat transfer of R410A inside internally grooved horizontal tubes. Int J Refrig 24(7):628–638

    Article  Google Scholar 

  • Grimley TA, Mudawwar IA, Incropera FP (1987) Enhancement of boiling heat transfer in falling films. In: Proc. 1987 ASME-JSME Therm. Eng. Joint Conf., vol 3, pp 411–418

    Google Scholar 

  • Gu CB, Chow LC, Beam JE (1989) Flow boiling in a curved channel. Heat Transf High Energy High Heat Flux Appl 119:25–32

    Google Scholar 

  • Gupte NS, Webb RL (1992) Convective vaporization of refrigerants in tube banks. ASHRAE Trans 98(Pt. 2):411–424

    Google Scholar 

  • Gupte NS, Webb RL (1994) Convective vaporization of pure refrigerants in enhanced and integral-fin tube banks. J Enhanc Heat Transf 1(4):351

    Article  Google Scholar 

  • Gupte NS, Webb RL (1995a) Convective vaporization data for pure refrigerants in Tube Banks. Part II: enhanced tubes. HVAC&R Res 1(1):48–60

    Article  Google Scholar 

  • Gupte NS, Webb RL (1995b) Convective vaporization data for pure refrigerants in tube banks, part I: integral-finned tubes. Int J HVAC&R Res 1(1):35–47

    Article  Google Scholar 

  • Hewitt GF, Roberts DN (1969) Studies of two-phase flow patterns by simultaneous X-ray and flash photography. Atomic Energy Research Establishment Harwell, UK

    Google Scholar 

  • Honda H, Takamatsu H, Wei JJ (2003) Enhanced boiling heat transfer from silicon chips with micro-pin fins immersed in FC-72. J Enhanc Heat Transf 10(2):211

    Article  Google Scholar 

  • Hori M, Shinohara Y (2001) Internal heat transfer characteristics of small diameter thermofin tubes. Hitachi Cable Rev 10:85–90

    Google Scholar 

  • Houfuku M, Suzuki Y, Inui K (2001) High performance, light weight thermos-fin tubes for air-conditioners using alternative refrigerants. Hitachi Cable Rev 20:97–100

    Google Scholar 

  • Hsieh YY, Lin TF (2002) Saturated flow boiling heat transfer and pressure drop of refrigerant R-410A in a vertical plate heat exchanger. Int J Heat Mass Transf 45(5):1033–1044

    Article  Google Scholar 

  • Hsieh SS, Huang GZ, Tsai HH (2003) Nucleate pool boiling characteristics from coated tube bundles in saturated R-134a. Int J Heat Mass Transf 46(7):1223–1239

    Article  Google Scholar 

  • Hu H, Ding GL, Huang XL, Deng B, Gao YF (2011) Experimental investigation and correlation of two-phase heat transfer of R410a/oil mixture flow boiling in a 5-mm microfin tube. J Enhanc Heat Transf 18(3):209–220

    Article  Google Scholar 

  • Huang X, Li RY, Yu HL (2004) Enhancement of boiling heat transfer for R11 and R123 by applying uniform electric field. J Enhanc Heat Transf 11(4):299

    Article  Google Scholar 

  • Hwang YW, Kim MS, Kim Y (2005) Evaporation heat transfer and pressure drop in micro-fin tubes before and after tube expansion. J Enhanc Heat Transf 12(1):59

    Article  Google Scholar 

  • Ikeuchi M, Yumikura T, Fujii M, Yamanaka G (1984) Heat-transfer characteristics of an internal microporous tube with refrigerant 22 under evaporating conditions. ASHRAE Trans 90(1A):196–211

    Google Scholar 

  • Ishihara K, Palen JW, Taborek J (1980) Critical review of correlations for predicting two-phase flow pressure drop across tube banks. Heat Transf Eng 1(3):23–32

    Article  Google Scholar 

  • Ishikawa S, Nagahara K, Sukumoda S (2002) Heat transfer and pressure drop during evaporation and condensation of HCFC22 in horizontal copper tubes with many inner fins. J Enhanc Heat Transf 9(1):17

    Article  Google Scholar 

  • Ito M, Kimura H (1979) Boiling heat transfer and pressure drop in internal spiral-grooved tubes. Bull JSME 22(171):1251–1257

    Article  Google Scholar 

  • Jensen MK (1984) A correlation for predicting the critical heat flux condition with twisted-tape swirl generators. Int J Heat Mass Transf 27(11):2171–2173

    Article  Google Scholar 

  • Jensen MK (1985) An evaluation of the effect of twisted-tape swirl generators in two-phase flow heat exchangers. Heat Transf Eng 6(4):19–30

    Article  Google Scholar 

  • Jensen MK, Bensler HP (1986) Saturated forced-convective boiling heat transfer with twisted-tape inserts. J Heat Transf 108(1):93–99

    Article  Google Scholar 

  • Jensen MK, Bergles AE (1981) Critical heat flux in helically coiled tubes. J Heat Transf 103(4):660–666

    Article  Google Scholar 

  • Jensen MK, Hsu JT 1987 A parametric study of boiling heat transfer in a tube bundle. In: Proceedings of the 1987 ASME-JSME thermal engineering joint conference, vol 3, pp 133–140

    Google Scholar 

  • Jensen MK, Trewin RR, Bergles AE (1992) Crossflow boiling in enhanced tube bundles. ASME, New York, NY (USA) 220:11–17

    Google Scholar 

  • Jones RJ, Pate DT, Thiagarajan N, Bhavnani SH (2009) Heat transfer and pressure drop characteristics in dielectric flow in surface-augmented microchannels. J Enhanc Heat Transf 6(3)

    Article  Google Scholar 

  • Kabata Y, Nakajima R, Shioda K (1996) Enhancement of critical heat flux for subcooled flow boiling of water in tubes with a twisted tape and with a helically coiled wire. In: ICONE-4: Proceedings. Vol 1—Part B: Basic technological advances

    Google Scholar 

  • Kandlikar SG (1991) Correlating flow boiling heat transfer data in binary systems. Phase Change Heat Transfer, p 159

    Google Scholar 

  • Kasza KE, Didascalou T, Wambsganss MW (1997) Microscale flow visualization of nucleate boiling in small channels: mechanisms influencing heat transfer. Argonne National Lab., Lemont, IL

    Google Scholar 

  • Kattan N, Thome JR, Favrat D (1998) Flow boiling in horizontal tubes: part 3—development of a new heat transfer model based on flow pattern. J Heat Transf 120(1):156–165

    Article  Google Scholar 

  • Kazachkov IV, Palm B (2005) Analysis of annular two-phase flow dynamics under heat transfer conditions. J Enhanc Heat Transf 12(1):37

    Article  Google Scholar 

  • Kedzierski MA, Kedzierski MA (1997) Convective Boiling and Condensation Heat Transfer with a Twisted-tape Insert for R12, R22, R152a, R134a, R290, R32/R134a, R32/R152a, R290/R134a, R134a/R600a. US Department of Commerce, National Institute of Standards and Technology

    Google Scholar 

  • Kew PA, Cornwell K (1997) Correlations for the prediction of boiling heat transfer in small-diameter channels. Appl Therm Eng 17(8–10):705–715

    Article  Google Scholar 

  • Kim NH (2015) Effect of aspect ratio on evaporation heat transfer and pressure drop of R-410A in flattened microfin tubes. J Enhanc Heat Transf 22(3):177

    Article  Google Scholar 

  • Kim MH, Shin JS, Bullard CW (2001) Heat transfer and pressure drop characteristics during R22 evaporation in an oval microfin tube. J Heat Transf 123(2):301–308

    Article  Google Scholar 

  • Kim NH, Cho JP, Youn B (2002) Forced convective boiling of pure refrigerants in a bundle of enhanced tubes having pores and connecting gaps. Int J Heat Mass Transf 45(12):2449–2463

    Article  Google Scholar 

  • Kitto JB, Weiner M (1982) Effects of nonuniform circumferential heating and inclination on critical heat flux in smooth and ribbed bore tubes. In: 7th international heat transfer conference, Munich

    Google Scholar 

  • Kosky PG (1971) Thin liquid films under simultaneous shear and gravity flows. Int J Heat Mass Transf 14:1220–1223

    Article  Google Scholar 

  • Koyama S, Yu J, Momoki S, Fujii T, Honda H (1995) Forced convective flow boiling heat transfer of pure refrigerants inside a horizontal microfin tube. In: Proceedings of the convective flow boiling, pp 137–42

    Google Scholar 

  • Kubanek GR, Miletti DL (1979) Evaporative heat transfer and pressure drop performance of internally-finned tubes with refrigerant 22. J Heat Transf 101(3):447–452

    Article  Google Scholar 

  • Kun LC, Czikk AM (1969) Surface for boiling liquids. US Patent 3,454,081 (Reissued 1979, Ref. 30,077), assigned to Union Carbide Corp

    Google Scholar 

  • Lan J, Disimile PJ, Weisman J (1997) Two phase flow patterns and boiling heat transfer in tubes containing helical wire inserts—part II—critical heat flux studies. 4(4)

    Google Scholar 

  • Lavin JG, Young EH (1965) Heat transfer to evaporating refrigerants in two-phase flow. AICHE J 11(6):1124–1132

    Article  Google Scholar 

  • Lazarek GM, Black SH (1982) Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113. Int J Heat Mass Transf 25(7):945–960

    Article  Google Scholar 

  • Lee SC, Chien LH (2011) Experimental study of pool boiling on pin-finned and straight-finned surfaces on an inclined plate in FC-72. J Enhanc Heat Transf 18(4):311

    Article  Google Scholar 

  • Lewis LG, Sather NF (1978) OTEC performance tests of the Union Carbide flooded-bundle evaporator. Argonne National Lab., Lemont, IL

    Book  Google Scholar 

  • Lin S, Kew PA, Cornwell K (2001) Two-phase heat transfer to a refrigerant in a 1 mm diameter tube. Int J Refrig 24:51–56

    Article  Google Scholar 

  • Liu ZH, Qiu YH (2002) Enhanced boiling heat transfer in restricted spaces of a compact tube bundle with enhanced tubes. Appl Therm Eng 22(17):1931–1941

    Article  Google Scholar 

  • Liu ZH, Tong TF (2002) Boiling heat transfer of water and R-11 on horizontally smooth and enhanced tubes enclosed by a concentric outer tube with two horizontal slots. Experimental heat transfer 15(3):161–175

    Article  Google Scholar 

  • Liu Z, Winterton RH (1991) A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. Int J Heat Mass Transf 34(11):2759–2766

    Article  Google Scholar 

  • Liu ZH, Yi J (2002) Falling film evaporation heat transfer of water/salt mixtures from roll-worked enhanced tubes and tube bundle. Appl Therm Eng 22(1):83–95

    Article  Google Scholar 

  • Lorenz JJ, Yung D (1979) A note on combined boiling and evaporation of liquid films on horizontal tubes. J Heat Transf 101(1):178–180

    Article  Google Scholar 

  • Mailen GS (1980) Experimental studies of OTEC heat transfer evaporation of ammonia on vertical smooth and fluted tubes (No. CONF-800633-2). Oak Ridge National Lab., Oak Ridge, TN

    Google Scholar 

  • Mandrusiak GD, Carey VP (1989) Convective boiling in vertical channels with different offset strip fin geometries. J Heat Transf 111(1):156–165

    Article  Google Scholar 

  • Manglik RM, Bergles AE (1993) Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes: part I—laminar flows. J Heat Transf 115(4):881–889

    Article  Google Scholar 

  • Marvillet C (1989) Influence of oil on nucleate pool boiling of refrigerants R-12 and R-22 from Porous Layer Tube. In: Proceedings of eighth eurotherm conference, advances in pool boiling heat transfer, Paderborn, Germany, pp 164–168

    Google Scholar 

  • Megerlin FE, Murphy RW, Bergles AE (1974) Augmentation of heat transfer in tubes by use of mesh and brush inserts. J Heat Transf 96(2):145–151

    Article  Google Scholar 

  • Mehendale S (2016) The impact of fin deformation on flow boiling heat transfer and pressure drop inmicrofin tubes. J Enhanc Heat Transf 23(3):197

    Article  Google Scholar 

  • Memory SB, Chilman SV, Marto PJ (1994) Nucleate pool boiling of a TURBO-B bundle in R-113. J Heat Transf 116(3):670–678

    Article  Google Scholar 

  • Memory SB, Akcasayar N, Eraydin H, Marto PJ (1995) Nucleate pool boiling of R-114 and R-114-oil mixtures from smooth and enhanced surfaces—II. Tube bundles. Int J Heat Mass Transf 38(8):1363–1376

    Article  Google Scholar 

  • Moeykens, SA, Pate MB (1996) Effect of lubricant on spray evaporation heat transfer performance of R-134a and R-22 in tube bundles (No. CONF-960254-). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA

    Google Scholar 

  • Moeykens SA, Huebsch WW, Pate MB (1995a) Heat transfer of R-134a in single-tube spray evaporation including lubricant effects and enhanced surface results. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA

    Google Scholar 

  • Moeykens SA, Newton BJ, Pate MB (1995b) Effects of surface enhancement, film-feed supply rate, and bundle geometry on spray evaporation heat transfer performance. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, GA

    Google Scholar 

  • Molki M, Ohadi MM, Rupani AP, Franca FH (2003) Enhanced flow boiling of R-134a in a minichannel plate evaporator. J Enhanc Heat Transf 10(1):1

    Article  Google Scholar 

  • Muller J (1986) Boiling heat transfer on finned tube bundles—the effect of tube position and intertube spacing. In: Proceedings of the 8th international heat transfer conference, vol 4, pp 2111–2116

    Google Scholar 

  • Muzzio A, Niro A, Arosio S (1998) Heat transfer and pressure drop during evaporation and condensation of R22 inside 9.52-mm OD microfin tubes of different geometries. J Enhanc Heat Transf 5(1):39

    Article  Google Scholar 

  • Nakajima K, Shiozawa A (1975) An experimental study on the performance of a flooded type evaporator. Heat Transf Jpn Res 4(3):49–66

    Google Scholar 

  • Nakayama W, Daikou T, Nakajima T (1982) Enhancement of Boiling and Evaporation on Structured Surfaces with Gravity-Driven Flow of R-11. In: Proceedings of the 7th international heat transfer conference, heat transfer 1982, Munich, Germany, vol 4, pp 409–414

    Google Scholar 

  • Nasr MR, Behfar R (2012) Enhanced evaporative fluid coolers. J Enhanc Heat Transf 19(2)

    Google Scholar 

  • Newell TA, Shah RK (2001) An assessment of refrigerant heat transfer, pressure drop, and void fraction effects in microfin tubes. HVAC&R Res 7(2):125–153

    Article  Google Scholar 

  • Nunez MP, Polley GT, Sunden B, Heggs PJ (1999) Methodology for the design of multi-stream plate-fin heat exchangers. In: Sunden B, Heggs PJ (eds) Recent advances in analysis of heat transfer for fin type surfaces. Computational Mechanics, Billerica, MA, pp 277–293

    Google Scholar 

  • O’Neill PS (1981) Private communication, February 16. Linde Div., Union Carbide Corp., Tonawanda, NY

    Google Scholar 

  • Ouazia B (2001) Evaporation heat transfer and pressure drop of HFC-134a inside a plate heat exchanger. In: Proceedings of American Society of Mechanical Engineers

    Google Scholar 

  • Owens WL (1978) Correlation of thin film evaporation heat transfer coefficient for horizontal tubes. In: Proceedings of the 5th OTEC conference, vol 3, pp 71–89

    Google Scholar 

  • Palm B (1990) Heat Transfer Augmentation in Flow Boiling by Aid of Perforated Metal Foils. In: ASME paper 90-WNHT-10, ASME, New York

    Google Scholar 

  • Panchal CB, France DM, Bell KJ (1992) Experimental investigation of single-phase, condensation, and flow boiling heat transfer for a spirally fluted tube. Heat Transf Eng 13(1):42–52

    Article  Google Scholar 

  • Parken WH, Fletcher LS, Sernas V, Han JC (1990) Heat transfer through falling film evaporation and boiling on horizontal tubes. J Heat Transf 112(3):744–750

    Article  Google Scholar 

  • Parker JL, El-Genk MS (2009) Saturation boiling of HFE-7100 dielectric liquid on copper surfaces with corner pins at different inclinations. J Enhanc Heat Transf 16(2)

    Article  Google Scholar 

  • Pearson JF, Young EH (1970) Simulated performance of refrigerant-22 boiling inside of tubes in a four pass shell and tube heat exchanger. AIChE Symp Ser 66(102):164–173

    Google Scholar 

  • Pettersen J (2003) Two-phase flow pattern, heat transfer, and pressure drop in microchannel vaporization of CO2/discussion. ASHRAE Trans 109:523

    Google Scholar 

  • Pierre B (1964) Flow resistance with boiling refrigerants: part 1 & part 2. ASHRAE J 6:58–77

    Google Scholar 

  • Polley GT, Ralston T, Grant ID (1980) Forced crossflow boiling in an ideal in-line tube bundle. In: ASME paper (80-HT), p 46

    Google Scholar 

  • Quazia B (2001) Evaporation heat transfer and pressure drop of HFC-134A inside a plate heat exchanger. In: Proceedings of the 2001 ASME international mechanical engineering congress and exposition, PID, vol 6, pp 115–123

    Google Scholar 

  • Ravigururajan TS, Bergles AE (1985) General correlations for pressure drop and heat transfer for single-phase turbulent flow in internally ribbed tubes. In: Augmentation of heat transfer in energy systems, ASME HTD-52, pp 9–20

    Google Scholar 

  • Rifert VG, Butuzov AI, Belik DN (1975) Heat transfer in vapor generation in a falling film inside a vertical tube with a finely-finned surface. Heat Trans Soviet Res 7(2):22–25

    Google Scholar 

  • Rifert VG, Putilin J, Podberezny VL (1992) Evaporation heat transfer in liquid films flowing down the horizontal smooth and longitudinally-profiled tubes. In: Institution of Chemical Engineers, Davis Building, Rugby (ENGL)(3-1289)

    Google Scholar 

  • Robertson JM (1980) Review of boiling, condensing and other aspects of two-phase flow in plate fin heat exchangers. In: Shah RK, McDonald CF, Howard CP (eds) Compact heat exchangers-history, technological advances and mechanical design problems, HTD, vol 10. ASME, New York, pp 17–27

    Google Scholar 

  • Roser R, Thonon B, Mercier P (1999) Experimental investigations on boiling of n-pentane across a horizontal tube bundle: two-phase flow and heat transfer characteristics. Int J Refrig 22(7):536–547

    Article  Google Scholar 

  • Schlager LM, Pate MB, Bergles AE (1988a) Performance of microfin tubes with refrigerant-22 and oil mixtures. ASHRAE J:17–28

    Google Scholar 

  • Schlager LM, Pate MB, Bergles AE (1988b) Evaporation and condensation of refrigerant-oil mixtures in a smooth tube and a micro-fin tube. ASHRAE Trans 94(3112):149–166

    Google Scholar 

  • Schlager LM, Pate MB, Bergles AE (1990) Evaporation and condensation heat transfer and pressure drop in horizontal, 12.7-mm microfin tubes with refrigerant 22. J Heat Transf 112(4):1041–1047

    Article  Google Scholar 

  • Schliinder EU, Chawla J (1967) Local heat transfer and pressure drop for refrigerants evaporating in horizontal, internally finned tubes. In: Proc Int Cong Refrig paper 2.47

    Google Scholar 

  • Seo K, Kim Y (2000) Evaporation heat transfer and pressure drop of R-22 in 7 and 9.52 mm smooth/micro-fin tubes. Int J Heat Mass Transf 43(16):2869–2882

    Article  Google Scholar 

  • Shatto DP, Peterson GP (2017) Flow boiling heat transfer with twisted tape inserts. J Enhanc Heat Transf 24(1–6):21

    Article  Google Scholar 

  • Shinohara Y, Tobe M (1985) Development of an improved thermofin tube. Hitachi Cable Rev 4:47–50

    Google Scholar 

  • Shinohara Y, Oizumi K, Itoh Y, Hori M (1987) Inventors Hitachi Cable Ltd, assignee. Heat-transfer tubes with grooved inner surface. United States Patent US 4,658,892

    Google Scholar 

  • Steiner D, Taborek J (1992) Flow boiling heat transfer of single components in vertical tubes. Heat Transf Eng 13(2):43–69

    Article  Google Scholar 

  • Swenson HS, Carver JR, Szoeke G (1962) The effects of nucleate boiling versus film boiling on heat transfer in power boiler tubes. J Eng Power 84(4):365–371

    Article  Google Scholar 

  • Taitel Y, Dukler AE (1976) A model for predicting flow regime transitions in horizontal and near horizontal gas-liquid flow. AICHE J 22(1):47–55

    Article  Google Scholar 

  • Takahashi K, Daikoku T, Yasuda H, Yamashita T, Zushi S (1990) The evaluation of a falling film evaporator in an R22 chiller unit. ASHRAE Trans 96(2):158–163

    Google Scholar 

  • Takamatsu H, Momoki S, Fujii T (1993) A correlation for forced convective boiling heat transfer of pure refrigerants in a horizontal smooth tube. Int J Heat Mass Transf 36(13):3351–3360

    Article  Google Scholar 

  • Tatara RA, Payvar P (1999) Effects of oil on boiling R-123 and R-134a flowing normal to an integral-finned tube bundle. ASHRAE Trans 105:478

    Google Scholar 

  • Tatara RA, Payvar P (2000a) Effects of oil on boiling of replacement refrigerants flowing normal to a tube bundle-part I. In: ASHRAE Winter Meeting 2000 ASHRAE

    Google Scholar 

  • Tatara RA, Payvar P (2000b) Effects of oil on boiling of replacement refrigerants flowing normal to a tube bundle—Part II. In: ASHRAE Winter Meeting 2000 ASHRAE

    Google Scholar 

  • Tatsumi A, Oizumi K, Hayashi M, Ito M (1982) Application of inner groove tubes to air conditioners. Hitachi Rev 32(1):55–60

    Google Scholar 

  • Thome JR (1990) Enhanced boiling heat transfer. Hemisphere Pub. Corp (Taylor & Francis)

    Google Scholar 

  • Thome JR (1996) Boiling of new refrigerants: a state-of-the-art review. Int J Refrig 19(7):435–457

    Article  Google Scholar 

  • Thome JR, Favrat D, Kattan N (1997) Evaporation in microfin tubes: a generalized prediction model

    Google Scholar 

  • Thome JR, Kattan N, Favrat D (1999) Evaporation in microfin tubes: a generalized prediction model. In: Convective flow and pool boiling. Taylor and Francis, pp 239–244

    Google Scholar 

  • Thonon B, Vidil R, Marvillet C (1995) Recent research and developments in plate heat exchangers. J Enhanc Heat Transf 2(1–2):149

    Article  Google Scholar 

  • Topin F, Rahli O, Tadrist L, Pantaloni J (1996) Experimental study of convective boiling in a porous medium: temperature field analysis. J Heat Transf 118(1):230

    Article  Google Scholar 

  • Torikoshi K, Ebisu T (1999) Japanese advanced technologies of heat exchanger in air-conditioning and refrigeration applications. In: Shah RK, Bell KJ, Honda H, Thonon B (eds) Compact heat exchangers and enhancement technology for the process industries. Begell Honse, New York, pp 17–24

    Google Scholar 

  • Tran TN, Wambsganss MW, France DM (1996) Small circular-and rectangular-channel boiling with two refrigerants. Int J Multiphase Flow 22(3):485–498

    Article  MATH  Google Scholar 

  • Tsuchida T, Yasuda K, Hori M, Otani T (1993) Internal heat transfer characteristics and workability of narrow thermofin tubes. Hitachi Cable Rev 12:97–100

    Google Scholar 

  • Varma HK, Agrawal KN, Bansal ML (1991) Heat transfer augmentation by coiled wire turbulence promoters in a horizontal refrigerant-22 evaporator. Presented at winter meeting, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, New York, NY. ASHRAE Trans 97:359–364

    Google Scholar 

  • Wadekar VV (1998) A comparative study of in-tube boiling on plain and high flux coated surfaces. J Enhanc Heat Transf 5(4):257

    Article  Google Scholar 

  • Wambsganss MW, France DM, Jendrzejczyk JA, Tran TN (1993) Boiling heat transfer in a horizontal small-diameter tube. J Heat Transf 115(4):963–972

    Article  Google Scholar 

  • Webb RL, Apparao TV (1990) Performance of flooded refrigerant evaporators with enhanced tubes. Heat Transf Eng 11(2):29–44

    Article  Google Scholar 

  • Webb RL, Chien LH (1994) Correlation of convective vaporization on banks of plain tubes using refrigerants. Heat Transf Eng 15(3):57–69

    Article  Google Scholar 

  • Webb RL, Choi K-D, Apparao T (1990) A theoretical model to predict the heat duty and pressure drop in flooded refrigerant evaporators. ASHRAE Trans 95(Pt. 1):326–338

    Google Scholar 

  • Webb RL, Gupte NS (1992) A critical review of correlations for convective vaporization in tubes and tube banks. Heat Transf Eng 13(3):58–81

    Article  Google Scholar 

  • Webb RL, Kim NH (2005) Principles of enhanced heat transfer, 2nd edn. Taylor & Francis

    Google Scholar 

  • Webb RL, Paek JW (2003) Letter to the editors—concerning paper published by Y.-Y. Yan and T.-F. Lin. Int J Heat Mass Transf 46:1111–1112

    Article  Google Scholar 

  • Weiland 1991 Ripple fin tubes, Wieland-Werke AG brochure TKI-42e(M)-02.91, Ulm, Germany

    Google Scholar 

  • Weisman J, Illeslamlou S (1988) A phenomenological model for prediction of critical heat flux under highly subcooled conditions. Fusion Technol 13:654–659

    Article  Google Scholar 

  • Weisman J, Pei BS (1983) Prediction of critical heat flux in flow boiling at low qualities. Int J Heat Mass Transf 26(10):1463–1477

    Article  Google Scholar 

  • Weisman J, Yang JY, Usman S (1994) A phenomenological model for boiling heat transfer and the critical heat flux in tubes containing twisted tapes. Int J Heat Mass Transf 37(1):69–80

    Article  Google Scholar 

  • Wen MY, Hsieh SS (1995) Saturated flow boiling heat transfer in internally spirally knurled/integral finned tubes. J Heat Transf 117(1):245–248

    Article  Google Scholar 

  • Wen MY, Jang KJ, Ho CY (2015) Flow boiling heat transfer in R-600a flows inside an annular tube with metallic porous inserts. J Enhanc Heat Transf 22(1)

    Article  Google Scholar 

  • Withers JG, Habdas EP (1974) Heat transfer characteristics of helical-corrugated tubes for intube boiling of refrigerant R-12. AIChE Symp Ser 70:98–106

    Google Scholar 

  • Yan YY, Lin TF (1998) Evaporation heat transfer and pressure drop of refrigerant R-134a in a small pipe. Int J Heat Mass Transf 41(24):4183–4194

    Article  Google Scholar 

  • Yan YY, Lin TF (1999) Evaporation heat transfer and pressure drop of refrigerant R-134a in a plate heat exchanger. J Heat Transf 121(1):118–127

    Article  Google Scholar 

  • Yasuda K, Ohizumi K, Hori M, Kawamata O (1990) Development of condensing thermofin-HEX-C tube. Hitachi Cable Rev:27–30

    Google Scholar 

  • Yasunobu F, Yang Y, Fujita N (2002) Flow boiling heat transfer and pressure drop in uniformly heated small tubes. Heat Transf 3:743–748

    Google Scholar 

  • Yilmaz S, Palen JW, Taboerk J (1981) Enhanced boiling surfaces as single tubes and tube bundles. In: Webb RL, Carnavos TC, Park EL, Hostetler KM (eds) Advances in enhanced heat transfer, HTD, vol 18, pp 123–130

    Google Scholar 

  • Yoshida S, Matsunaga T, Hong HP, Nishikawa K (1987) Heat transfer to refrigerants in horizontal evaporator tubes with internal, spiral grooves. In: Proceedings of the 1987 ASME-JSME thermal engineering joint conference, vol 5, pp 165–172

    Google Scholar 

  • Yu W, France DM, Wambsganss MW, Hull JR (2002) Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube. Int J Multiphase Flow 28(6):927–941

    Article  MATH  Google Scholar 

  • Yu HL, Li RY, Huang X, Chen ZH (2004) EHD boiling heat transfer enhancement outside horizontal tubes. J Enhanc Heat Transf 11(4):291

    Article  Google Scholar 

  • Zeng X, Chyu M, Ayub ZH (1998) Ammonia spray evaporation heat transfer performance of single low-fin and corrugated tubes. ASHRAE Trans 104(Pt.1):185–196

    Google Scholar 

  • Zeng X, Chyu MC Ayub ZH (2000) An experimental study of spray evaporation of Ammonia in a square-pitch, low-fin tube bundle. In: Proceedings of the 34th national heat transfer conference, Pittsburgh, PA. NHTC, pp 2000–12215

    Google Scholar 

  • Zhang Y, Wei J, Guo D (2012) Enhancement of flow-jet combined boiling heat transfer of FC-72 over micro-pin-finned surfaces. J Enhanc Heat Transf 19(6):489

    Article  Google Scholar 

  • Zhao Y, Molki M, Ohadi MM, Dessiatoun SV (2000) Flow boiling of CO2 in microchannels. Univ. of Maryland, College Park, MD

    Google Scholar 

  • Zhao Y, Molki M, Ohadi MM 2001 Predicting flow boiling heat transfer of C02 microchannels. In: Jaluria Y (ed) Proceedings of the ASME, HTD, Vol 369-3. ASME international mechanical engineering congress and exposition, ASME, New York, pp 195–204

    Google Scholar 

  • Zhou DW, Liu DY, Cheng P (2004) Boiling heat transfer characteristics from a horizontal tube embedded in a porous medium with acoustic excitation. J Enhanc Heat Transf 11(3):231

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, S.K., Ranjan, H., Emani, M.S., Bharti, A.K. (2020). Flow Boiling Enhancement Techniques. In: Two-Phase Heat Transfer Enhancement. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-20755-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20755-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20754-0

  • Online ISBN: 978-3-030-20755-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics