Skip to main content

Reproduction of Long-Period Ground Motion by Cable Driven Earthquake Simulator Based on Computed Torque Method

  • Conference paper
  • First Online:
Cable-Driven Parallel Robots (CableCon 2019)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 74))

Included in the following conference series:

Abstract

In order to reproduce seismic waves classified in long-period ground motion by disaster prevention education facility, an earthquake simulator based on a cable-driven parallel mechanism has been constructed. In this paper, a feedforward-based control scheme was implemented in the cable-driven earthquake simulator for achieving high acceleration with frequent reverse rotation required to reproduce actually-observed seismic waves. The derivation of the dynamic model was done in two steps, the first step is calculating cable tensions to achieve a moving platform’s target acceleration, and the second is for each spooler’s torque calculation to achieve that tension. For a feedforward torque calculation using the second inverse dynamic model of cable spooler, an experimental identification scheme of model parameters which takes a rapid change of torque-velocity relationship of spooler at the moment of reverse rotation into account were figured out. By using the implemented control scheme with identified model parameters, capability of the developed earthquake simulator for reproducing an actually-observed typical long period ground motion was demonstrated by motion control experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yoshio Masaki (2013). Duration of “feeling of being shaken” as Assessed Using an Earthquake Simulator Vehicle. Equilibrium Research, vol. 72, 459-466.

    Google Scholar 

  2. H. Koketsu and H. Miyake (2008). A Seismological Overview of Long-Period Ground Motion, Journal of Seismology, Vol. 12, Issue 2, pp. 133-143.

    Article  Google Scholar 

  3. K. Ohtani, N. Ogawa, T. Takayama, and H. Shibata (2004). Construction of E-DEFENSE (3-D full-scale earthquake testing facility). Thirteenth World Conference on Earthquake Engineering, 189.

    Google Scholar 

  4. Roh Se-Gon, Y. Taguchi, Y. Nishida, R. Yamaguchi, Y. Fukuda, S. Kuroda, M. Yoshida, Fukushima E. F., and S. Hirose (2013). Development of the portable ground motion simulator of an earthquake. IEEE International Conference on Intelligent Robots and Systems, 5339-5344.

    Google Scholar 

  5. S. Hirose, S. Amano (1993). The VUTON: High payload, high efficiency holonomic omnidirectional vehicle. In Proceedings of the Sixth Symposium on Robotics Research, 253-260.

    Google Scholar 

  6. D. Matsuura, S. Ishida, M. Akramin, E. B. Küçüktabak, Y. Sugahara, S. Tanaka, N. Fukuwa, M. Yoshida, Y. Takeda (2016). Conceptual Design of a Cable Driven Parallel Mechanism for Planar Earthquake Simulation, The 21st CISM-IFToMM Symposium on Robot Design, Dynamics and Control (ROMANSY2016), Springer, pp.403-411.

    Google Scholar 

  7. R. C. Paul: Modelling, Trajectory Calculation, and Servoing of a Computer Controlled Arm. Technical Report AIM-177, Stanford University, Artificial Intelligence Laboratory, 1972.

    Google Scholar 

  8. Robert L. Williams IIPaolo Gallina (2003). Translational Planar Cable-Direct-Driven Robots, Journal of Intelligent and Robotic Systems, Vol. 37, Issue 1, pp. 69–96.

    Google Scholar 

  9. A. Aflakiyan, H. Bayani, M. T. Masouleh (2015), Computed torque control of a cable suspended parallel robot, Proc. of 2015 3rd RSI Inter. Conf. on Robotics and Mechatronics (ICROM), pp. 749-754.

    Google Scholar 

  10. A. B. Alp, S. K. Agrawal (2002). Cable Suspended Robots: Feedback Controllers with Positive Inputs, Proc. of the 2002 American Control Conf., pp. 815-820.

    Google Scholar 

  11. A. Pott, T. Bruckmann, L. Mikelsons (2009). Closed-form Force Distribution for Parallel Wire Robots, Computational Kinematics, Springer, pp.25-34.

    Google Scholar 

  12. K. Tsuruta, S. Futami, H. Nakamura and T. Murakami (2000). The Inertia Identification Method Eliminating the Influences of Viscous Friction, Coulomb Friction and Constant Disturbance Torque in Motion Systems, J. of the Japan Society for Precision Engineering, Vol. 66, Issue 10, pp. 1564-1567. (In Japanese)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by JKA and its promotional funds from AUTORACE (2017M-154). The authors greatly thank Prof. Shigeo Hirose (Cofounder and CEO of HiBot corp., Japan) and Prof. Keisuke Arikawa (Kanagawa Inst. of Tech., Japan) for their valuable advices on the design of cable drive mechanism.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Matsuura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Matsuura, D., Ueki, T., Sugahara, Y., Yoshida, M., Takeda, Y. (2019). Reproduction of Long-Period Ground Motion by Cable Driven Earthquake Simulator Based on Computed Torque Method. In: Pott, A., Bruckmann, T. (eds) Cable-Driven Parallel Robots. CableCon 2019. Mechanisms and Machine Science, vol 74. Springer, Cham. https://doi.org/10.1007/978-3-030-20751-9_35

Download citation

Publish with us

Policies and ethics