Skip to main content

Fouling on Various Types of Enhanced Heat Transfer Surfaces

  • Chapter
  • First Online:
  • 992 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

Fouling on various types of enhanced heat transfer surfaces has been discussed in this chapter. Fouling fundamentals in respect of liquids and gas flow have been considered in detail. Liquid fouling in internally finned tubes, rough tubes, plate-fin geometry and fouling in plate heat exchanger is an important consideration. Modelling of fouling in enhanced tubes and correlations for fouling in rough tubes have been dealt with adequately.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd-Elhady MS, Zornek T, Malayeri MR, Balestrino S, Szymkowicz PG, Müller-Steinhagen H (2011) Influence of gas velocity on particulate fouling of exhaust gas recirculation coolers. Int J Heat Mass Transfer 54(4):838–846

    Article  Google Scholar 

  • Ahn YC, Cho JM (2003) An experimental study of the air-side particulate fouling in fin-and tube heat exchangers of air conditioners. J Chem Eng 20:873–877, Korean

    Google Scholar 

  • Babuška I, Silva RS, Actor J (2018) Break-off model for CaCO3 fouling in heat exchangers. Int J Heat Mass Transfer 116:104–114

    Article  Google Scholar 

  • Bansal B, Muller-Steinhagen H, Chen XD (1997) Effect of suspended particles on crystallization fouling in plate heat exchangers. J Heat Transfer 119(3):568–574

    Article  Google Scholar 

  • Bell IH, Groll EA, König H (2011) Experimental analysis of the effects of particulate fouling on heat exchanger heat transfer and air-side pressure drop for a hybrid dry cooler. Heat Transfer Eng 32(3–4):264–271

    Google Scholar 

  • Bemrose CR, Bott TR (1984) Correlations for gas-side fouling of finned tubes. Institute of Jul 3

    Google Scholar 

  • Bergles AE, Somerscales EFC (1995) The effect of fouling on enhanced heat transfer equipment. J Enhanc Heat Transf 2:157–166

    Article  Google Scholar 

  • Bott TR, Bemrose CR (1983) Particulate fouling on the gas-side of finned tube heat exchangers. J Heat Transfer 105(1):178–183

    Article  Google Scholar 

  • Bott TR (1995) Fouling of heat exchangers. Elsevier

    Google Scholar 

  • Boyd LW, Hammon JC, Littrel JJ, Withers JG (1983) Efficiency improvement at Gallatin Unit 1 with corrugated condenser tubes. Am Soc Mech Eng 83

    Google Scholar 

  • Burgmeier L, Leung S (1981) Brayton-cycle heat recovery-system characterization program. Subatmospheric-system test report (No. DOE/CS/40008-T9). Alpha Glass, Inc., El Segundo, CA (USA); AiResearch Mfg. Co., Torrance, CA (USA)

    Google Scholar 

  • Chamra, LM (1993) A theoretical and experimental study of particulate fouling in enhanced tubes

    Google Scholar 

  • Chamra LM, Webb RL (1994a) Effect of particle size and size distribution on particulate fouling in enhanced tubes. J Enhanc Heat Transf 1(1):65–75

    Google Scholar 

  • Chamra LM, Webb RL (1994b) Modeling liquid-side particulate fouling in enhanced tubes. Int J Heat Mass Transfer 37(4):571–579

    Article  Google Scholar 

  • Cooper A, Suitor JW, Usher JD (1980) Cooling water fouling in plate heat exchangers. Heat Transfer Eng 1(3):50–55

    Article  Google Scholar 

  • Epstein N (1983a) Thinking about fouling: a 5 × 5 matrix. Heat Transfer Eng 4(1):43–56

    Article  Google Scholar 

  • Epstein N (1983b) Thinking about heat transfer fouling: a 5 × 5 matrix. Heat Transfer Eng 4(1):43–56

    Article  Google Scholar 

  • Epstein N (1988a) General thermal fouling models. In: Fouling science and technology. Springer, Dordrecht, pp 15–30

    Chapter  Google Scholar 

  • Epstein N (1988b) Particulate fouling of heat transfer surfaces: mechanisms and models. In: Fouling science and technology. Springer, Dordrecht, pp 143–164

    Chapter  Google Scholar 

  • Freeman WB, Middis J, Müller-Steinhagen HM (1990) Influence of augmented surfaces and of surface finish on particulate fouling in double pipe heat exchangers. Chem Eng Process Process Intensif 27(1):1–11

    Article  Google Scholar 

  • Garrett-Price BA, Smith SA, Watts RL, Knudsen JG, Marner WJ, Suitor JW (1985) Fouling of heat exchangers. Noyes Publications, Park Ridge, NJ

    Google Scholar 

  • Gomelauri VI, Gruzin AN, Magrakvelidze T, Lekveishvili NN (1992) The effect of two-dimensional artificial roughness on the formation of deposits on heat transfer surfaces. Therm Eng 39(8):439–441

    Google Scholar 

  • Grillot JM, Icart G (1997) Fouling of a cylindrical probe and a finned tube bundle in a diesel exhaust environment. Exp Therm Fluid Sci 14(4):442–445

    Article  Google Scholar 

  • He L, Yang W, Guan C, Yan H (2016) Hydrodynamic characteristics and structural improvement of a fixed mount in a heat exchanger with one-way fluid–structure interaction. J Enhanc Heat Transf 23(6):431–447

    Article  Google Scholar 

  • Katz DL, Knudsen JG, Balekjian G, Grover SS (1954) Fouling of heat exchangers. Petroleum Refiner 33(4):123–125

    Google Scholar 

  • Kern DQ, Seaton RE (1959) A theoretical analysis of thermal surface fouling. Br Chem Eng 4:258–262

    Google Scholar 

  • Keysselitz J (1984) Can waterside condenser fouling be controlled operationally. ASME Heat Transfer Div 35:47–54

    Google Scholar 

  • Kim NH (2015) Single-phase pressure drop and heat transfer measurements of turbulent flow inside helically dimpled tubes. J Enhanc Heat Transf 22(4):345–363

    Article  Google Scholar 

  • Kim NH, Webb RL (1989) Experimental study of particulate fouling in enhanced water chiller condenser tubes. ASHRAE Transactions (American Society of Heating, Refrigerating and Air-Conditioning Engineers);(USA), 95(CONF-890609)

    Google Scholar 

  • Kim NH, Webb RL (1990) Particulate fouling inside tubes having arc-shaped two-dimensional roughness by flowing suspension of aluminium oxide in water. Heat Transfer, pp 139–146

    Google Scholar 

  • Kim NH, Webb RL (1991) Particulate fouling of water in tubes having a two-dimensional roughness geometry. Int J Heat Mass Transf 34:2727–2738

    Article  Google Scholar 

  • Kindlman L, Silverstrini R (1979) Heat exchanger fouling and corrosion evaluation, Air Research Mfg. Co. report 78–1516(2) on DOE Contract DE-AC03-77ET11296, April 30

    Google Scholar 

  • Lankinen R, Suihkonen J, Sarkomaa P (2003) The effect of air side fouling on thermal-hydraulic characteristics of a compact heat exchanger. Int J Energy Res 27(4):349–361

    Article  Google Scholar 

  • Leitner G (1980) Controlling chiller tube fouling. Ashrae J 22(2):40–43

    Google Scholar 

  • Lewis MJ (1975) An elementary analysis for predicting the momentum-and heat-transfer characteristics of a hydraulically rough surface. J Heat Transfer 97(2):249–254

    Article  Google Scholar 

  • Li W, Webb RL (2000) Fouling in enhanced tubes using cooling tower water: Part II: Combined particulate and precipitation fouling. Int J Heat Mass Transfer 43(19):3579–3588

    Article  MATH  Google Scholar 

  • Li W, Webb RL (2002) Fouling characteristics of internal helical-rib roughness tubes using low-velocity cooling tower water. Int J Heat Mass Transf 45:1685–1691

    Article  Google Scholar 

  • Liao Q, Zhu X, Xin MD (2000) Augmentation of turbulent convective heat transfer in tubes with three-dimensional internal extended surfaces. J Enhanc Heat Transf 7(3):139–151

    Article  Google Scholar 

  • Mahmood GI, Ligrani PM (2002) Heat transfer in a dimpled channel: combined influences of aspect ratio, temperature ratio, Reynolds number, and flow structure. Int J Heat Mass Transfer 45(10):2011–2020

    Article  Google Scholar 

  • Marner WJ (2014) Predictive methods for gas-side fouling. J Enhanc Heat Transf 21:4–5

    Article  Google Scholar 

  • Marner WJ, Webb RL (1983) A bibliography on gas-side fouling. In: Proceedings of the ASME-JSME thermal engineering joint conference 1:1

    Google Scholar 

  • Masri MA, Cliffe KR (1996) A study of the deposition of fine particles in compact plate fin heat exchangers. J Enhanc Heat Transf 3(4):259–272

    Article  Google Scholar 

  • Melo LF, Bott TR, Bernardo CA (1987) Fouling science and technology, proceedings of the NATO advanced study institute. Kluwer Academic Publishers, Hingham, MA

    Google Scholar 

  • Moore JA (1974) Fin tubes foil fouling for scaling services. Chemical Processing (1980)

    Google Scholar 

  • Müller-Steinhagen HM, Middis J (1989) Particulate fouling in plate heat exchangers. Heat Transfer Eng 10(4):30–36

    Article  Google Scholar 

  • Müller-Steinhagen H, Reif F, Epstein N, Watkinson AP (1988) Influence of operating conditions on particulate fouling. Can J Chem Eng 66(1):42–50

    Article  Google Scholar 

  • Nishida S, Murata A, Saito H, Iwamoto K (2012) Compensation of three-dimensional heat conduction inside wall in heat transfer measurement of dimpled surface by using transient technique. J Enhanc Heat Transf 19(4):331–341

    Article  Google Scholar 

  • Owen I, El-Kady A, Cleaver JW (1987) Fine particle fouling of roughened heat transfer surfaces. In: Proc. 2nd ASME-JSME thermal engineering joint conference, Hawaii, pp 95–101

    Google Scholar 

  • Panchal CB (1989) Experimental investigation of seawater biofouling for enhanced surfaces (No. CONF-890819-18). Argonne National Lab, Argonne, IL

    Google Scholar 

  • Renfftlen RG (1991) On-line sponge ball cleaning of enhanced heat transfer tubes. In: National heat transfer conference, HTD 164

    Google Scholar 

  • Rabas TJ, Merring R, Schaefer R, Lopez-Gomez R, Thors P (1990) Heat-rate improvements obtained with the use of enhanced tubes in surface condensers, presented at the EPRI condenser technology Conf, Boston, 1990

    Google Scholar 

  • Roberts PB, Kubasco AJ (1979) Combined cycle steam generator gas side fouling evaluation. Phase 1 (No. SR79-R-4557-20). Solar Turbines International, San Diego, CA

    Google Scholar 

  • Sheikholeslami R, Watkinson AP (1986) Scaling of plain and externally finned heat exchanger tubes. J Heat Transfer 108(1):147–152

    Article  Google Scholar 

  • Shen C, Cirone C, Jacobi AM, Wang X (2015) Fouling of enhanced tubes for condensers used in cooling tower systems: a literature review. Appl Therm Eng 79:74–87

    Article  Google Scholar 

  • Somerscales EFC, Ponteduro AF, Bergles AE (1991) Particulate fouling of heat transfer tubes enhanced on their inner surface. In: Fouling and enhancement interactions, vol 164. ASME, New York, pp 17–28

    Google Scholar 

  • Somerscales EFC, Knudsen JG (1979) Fouling of heat transfer equipment. Hemisphere Publishing Corporation, Washington, DC

    Google Scholar 

  • Takahashi K, Nakayama W, Kuwahara H (1988) Enhancement of forced convective heat transfer in tubes having three-dimensional spiral ribs. Heat Transfer Jpn Res 17(4):12–28

    Google Scholar 

  • Thonon B, Grandgeorge S, Jallut C (1999) Effect of geometry and flow conditions on particulate fouling in plate heat exchangers. Heat Transfer Eng 20(3):12–24

    Article  Google Scholar 

  • Watkinson AP (1990) Fouling of augmented heat transfer tubes. Heat Transfer Eng 11(3):57–65

    Article  Google Scholar 

  • Watkinson AP (1991) Interactions of enhancement and fouling. In: Fouling and enhancement interactions, vol 164. ASME, New York, pp 1–7

    Google Scholar 

  • Watkinson AP, Epstein N (1970) In: Proceed. 4th. inter. heat transfer confer., Versailles, France, vol 1, pp 1–12

    Google Scholar 

  • Watkinson AP, Martinez O (1975) Scaling of spirally indented heat exchanger tubes. J Heat Transfer 97(3):490–492

    Article  Google Scholar 

  • Watkinson AP, Louis L, Brent R (1974) Scaling of enhanced heat exchanger tubes. Can J Chem Eng 52(5):558–562

    Article  Google Scholar 

  • Webb RL, Chamra LM (1991) On-line cleaning of particulate fouling in enhanced tubes. In: Fouling and enhancement interactions. ASME, New York

    Google Scholar 

  • Webb RL, Kim NH (1989) Particulate fouling in enhanced tubes. In: National heat transfer conference

    Google Scholar 

  • Webb RL, Kim NY (2005) Principles of enhanced heat transfer. Taylor and Francis, New York

    Google Scholar 

  • Webb RL, Li W (2000) Fouling in enhanced tubes using cooling tower water: Part I: Long-term fouling data. Int J Heat Mass Transfer 43(19):3567–3578

    Article  MATH  Google Scholar 

  • Webb RL, Marchiori D, Durbin RE, Wang YJ, Kulkarni AK (1984) Heat exchangers for secondary heat recovery from glass plants. J Heat Recov Syst 4(2):77–85

    Article  Google Scholar 

  • Webber WO (1960) Does fouling rule out using finned tubes in reboilers. Petroleum Refiner 39(3):183–186

    Google Scholar 

  • Yang WM, Ding YM, Geng LB, Huang W (2005) Rotor-assembled automaticcleaning and heat transfer enhancement device, CN patent 200520127121.9, assigned to Huang Wei and Beijing University of Chemical Technology

    Google Scholar 

  • Zhang G, Bott TR, Bemrose CR (1990) Finned tube heat exchanger fouling by particles. In: Proc 9th int. heat transfer conf, pp 115–120

    Google Scholar 

  • Zhang G, Bott TR, Bemrose CR (1992) Reducing particle deposition in air-cooled heat exchangers. Heat Transfer Eng 13(2):81–87

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, S.K., Ranjan, H., Emani, M.S., Bharti, A.K. (2020). Fouling on Various Types of Enhanced Heat Transfer Surfaces. In: Introduction to Enhanced Heat Transfer. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-20740-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20740-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20742-7

  • Online ISBN: 978-3-030-20740-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics