Skip to main content

Charcoal Rot Resistance in Soybean: Current Understanding and Future Perspectives

  • Chapter
  • First Online:
Disease Resistance in Crop Plants

Abstract

Soybean (Glycine max L.) is a leading oil seed crop in the world. Owing to climate change, its production is challenged by many forms of biotic and abiotic stresses. Charcoal rot (Macrophomina phaseolina (Tassi) Goid) disease incidence is aggravated with the increase in soil and air temperatures. Charcoal rot disease in soybean is likely to gain its economic importance with the increase in global temperature. Apart from soybean, this pathogen has a wide host range including some economical crops like sorghum and maize. So far, complete resistance to this pathogen has not been identified in any of the crop species. Field screening techniques based on the colony-forming unit index (CFUI) and estimation of root stem severity (RSS) and glasshouse screening technique, such as cut-stem inoculation, are mainly employed in identifying charcoal rot resistance sources in soybean. High-throughput screening can be possible through cut-stem inoculation technique. There are reports indicating the correlation between field screening results and results obtained from this technique, and researchers have used this technique in understanding the genetic architecture of charcoal rot resistance and in identifying candidate genes and QTL governing charcoal rot resistance. Drought conditions are favourable for disease incidence and aggressiveness. Not all drought-tolerant genotypes are resistant to charcoal rot but some drought-tolerant genotypes are found to be moderately resistant to the disease. Significant yield losses are reported due to this disease even under irrigated conditions. Research is gaining momentum in developing high-throughput, reliable and repeatable glasshouse and in vitro screening techniques to identify stable sources of resistance and in understanding the genetic architecture of charcoal rot resistance. Breeding programs are under way for developing high-yielding, charcoal-rot-resistant and drought-tolerant cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arelli PR, Shannon JG, Mengistu A et al (2017) Registration of conventional soybean germplasm JTN-4307 with resistance to nematodes and fungal diseases. Journal of Plant Registrations 11: 192–199

    Google Scholar 

  • Bandara YMAY, Perumal R, Little CR (2015) Integrating resistance and tolerance for improved evaluation of sorghum lines against Fusarium stalk rot and charcoal rot. Phytoparasitica. https://doi.org/10.1007/s12600-014-0451-0

  • Bao Y, Vuong T, Meinhardt C, Tiffin P et al (2014) Potential of association mapping and genomic selection to explore PI 88788 derived soybean cyst nematode resistance. Plant Genome 7:1–13. https://doi.org/10.3835/plantgenome2013.11.0039

    Article  Google Scholar 

  • Bao Y, Kurle JE, Anderson G, Young ND (2015) Association mapping and genomic prediction for resistance to sudden death syndrome in early maturing soybean germplasm. Mol Breed 35:128. https://doi.org/10.1007/s11032-015-0324-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bastien M, Sonah H, Belzile F (2014) Genome wide association mapping of Sclerotinia sclerotiorum resistance in soybean with a genotyping-by-sequencing approach. Plant Genome 7:1–13. https://doi.org/10.3835/plantgenome2013.10.0030

    Article  Google Scholar 

  • Bellaloui N, Mengistu A, Zobiole L et al (2012) Resistance to toxin-mediated fungal infection: role of lignins, isoflavones, other seed phenolics, sugars, and boron in the mechanism of resistance to charcoal rot disease in soybean. Toxin Rev 31(1–2):16–26

    Article  CAS  Google Scholar 

  • Chang HX, Brown PJ, Lipka AE et al (2016) Genome-wide association and genomic prediction identifies associated loci and predicts the sensitivity of tobacco ring spot virus in soybean plant introductions. BMC Genomics 17:153. https://doi.org/10.1186/s12864-016-2487-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cloud GL, Rupe JC (1991) Morphological instability on a chlorate medium of isolates of Macrophomina phaseolina from soybean and sorghum. Phytopathology 78:1563

    Google Scholar 

  • Contreras-Soto RI, de Oliveira MB, Costenaro-da-Silva D et al (2017) Population structure, genetic relatedness and linkage disequilibrium blocks in cultivars of tropical soybean (Glycine max). Euphytica. https://doi.org/10.1007/s10681-017-1966-5

  • Coser SM, Reddy RVC, Zhang J et al (2017) Genetic architecture of charcoal rot (Macrophomina phaseolina) resistance in soybean revealed using a diverse panel. Front Plant Sci 8:1626. https://doi.org/10.3389/fpls.2017.01626

    Article  PubMed  PubMed Central  Google Scholar 

  • Das IK, Prabhakar Indira S (2008) Role of stalk-anatomy and yield parameters in development of charcoal rot caused by Macrophomina phaseolina in winter sorghum. Phytoparasitica 36:199–208

    Article  Google Scholar 

  • Dhingra OD, Sinclair JB (1978) Biology and pathology of Macrophomina phaseolina. Universidade Federal de Viçosa, Viçosa

    Google Scholar 

  • Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development descriptions for soybeans, Glycine max (L.) Merr. Crop Sci 11:929–931

    Article  Google Scholar 

  • Francl LJ, Wyllie TD, Rosenbrock SM et al (1988) Influence of crop rotation on population density of Macrophomina phaseolina in soil infested with Heterodera glycines. Plant Dis 72:760–764

    Article  Google Scholar 

  • Garcia-Olivares JG, Lopez-Salina EL, Cumpian-Gutierrez J et al (2012) Grain yield and charcoal rot resistance in common beans under terminal drought conditions. J Phytopathol 160:98–105

    Article  Google Scholar 

  • Gary FA, Mihail JD, Lavigne RJ et al (1991) Incidence of charcoal rot of sorghum and soil populations of Macrophomina phaseolina associated with sorghum and native vegetation in Somalia. Mycopathologia 114:145–151

    Article  Google Scholar 

  • Gillen AM, Mengistu A, Smith JR et al (2016) Registration of DT99 16864 soybean germplasm line with moderate resistance to Charcoal Rot [Macrophomina phaseolina (Tassi) Goid.]. J Plant Reg 10:309–315. https://doi.org/10.3198/jpr2016.01.0002crg

    Article  Google Scholar 

  • Hanson AA, Lorenz AJ, Hesler LS et al (2018) Genome-wide association mapping of host-plant resistance to soybean aphid. Plant Genome 11:180011. https://doi.org/10.3835/plantgenome2018.02.0011

    Article  CAS  Google Scholar 

  • Hernández-Delgado S, Reyes-Valdés MH, Rosales-Serna R et al (2009) Molecular markers associated with resistance to Macrophomina phaseolina (tassi) goid. in common bean. J Plant Pathol 91(1):163–170

    Google Scholar 

  • Iquira E, Humira S, Francois B (2015) Association mapping of QTLs for sclerotinia stem rot resistance in a collection of soybean plant introductions using a genotyping by sequencing (GBS) approach. BMC Plant Biol 15:5. https://doi.org/10.1186/s12870-014-0408-y

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam MS, Haque MS, Islam MM et al (2012) Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina. BMC Genomics 13:493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James WC (1974) Assessment of plant disease losses. Annu Rev Phytopathol 12:27–48

    Article  Google Scholar 

  • Johnson HW (1958) Registration of soybean varieties: VI. Agron J 50:690–691

    Article  Google Scholar 

  • Kang S, Lebrun MH, Farrall L et al (2001) Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Mol Plant-Microbe Interact 14:671–674

    Article  CAS  PubMed  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 29:9. https://doi.org/10.1186/1746-4811-9-29

    Article  CAS  Google Scholar 

  • Li H, Rodda M, Gnanasambandam A et al (2015) Breeding for biotic stress resistance in chickpea: progress and prospects. Euphytica 204:257–288

    Article  Google Scholar 

  • Luna MPR, Mueller D, Mengistu A et al (2017) Advancing our understanding of charcoal rot in soybeans. J Integr Pest Manag 8(1):1–8

    Article  Google Scholar 

  • Ma J, Hill CB, Hartman GL (2010) Production of Macrophomina phaseolina conidia by multiple soybean isolates in culture. Plant Dis 94(9):1088–1092. https://doi.org/10.1094/PDIS-94-9-1088

    Article  CAS  PubMed  Google Scholar 

  • Madden LV, Hughes G, van den Bosch F (2007) The study of plant disease epidemics. APS Press, St. Paul

    Google Scholar 

  • Mah KM, Uppalapati SR, Tang Y et al (2012) Gene expression profiling of Macrophomina phaseolina infected Medicago truncatula roots reveals a role for auxin in plant tolerance against the charcoal rot pathogen. Physiol Mol Plant Pathol 79:21–30

    Article  CAS  Google Scholar 

  • Manici LM, Caputo FA, Cerato C (1995) Temperature responses of isolates of Macrophomina phaseolina from different climatic regions of sunflower production in Italy. Plant Dis 79:934–938

    Article  Google Scholar 

  • Mengistu A, Ray JD, Smith JR, Paris RL (2007) Charcoal rot disease assessment of soybean genotypes using a colony-forming unit index. Crop Sci 47:2453–2461

    Article  Google Scholar 

  • Mengistu A, Arelli PA, Bond JP et al (2011a) Evaluation of soybean genotypes for resistance to charcoal rot. Online Plant Health Prog. https://doi.org/10.1094/PHP-2010-0926-01-RS

  • Mengistu A, Smith JR, Ray JD (2011b) Seasonal progress of charcoal rot and its impact on soybean productivity. Plant Dis 95:1159–1166

    Article  PubMed  Google Scholar 

  • Mengistu A, Bond J, Nelson R et al (2013) Identification of soybean accessions resistant to Macrophomina phaseolina by field screening and laboratory validation. Online Plant Health Prog. https://doi.org/10.1094/PHP-2013-0318-01-RS

  • Mengistu A, Ray JD, Smith JR et al (2014) Maturity effects on colony-forming units of Macrophomina phaseolina infection as measured using near-isogenic lines of soybeans. J Crop Improv 28:38–56. https://doi.org/10.1080/15427528.2013.858284

    Article  Google Scholar 

  • Mengistu A, Ray JD, Smith JR et al (2018) Effect of charcoal rot on selected putative drought tolerant soybean genotypes and yield. Crop Prot 105:90–10

    Article  Google Scholar 

  • Meyer WA, Sinclair JB, Khare MM (1974) Factors affecting charcoal rot of soybean seedlings. Phytopathology 64:845–849

    Article  Google Scholar 

  • Moellers TC, Singh A, Zhang J et al (2017) Main and epistatic loci studies in soybean for Sclerotinia sclerotiorum resistance reveal multiple modes of resistance in multi-environments. Sci Rep 7:3554. https://doi.org/10.1038/s41598-017-03695-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchero W, Ehlers JD, Close TJ et al (2009) Mapping QTL for drought stress-induced premature senescence and maturity in cowpea [Vigna unguiculata (L) Walp]. Theor Appl Genet 118:849–863

    Article  CAS  PubMed  Google Scholar 

  • Muchero W, Ehlers JD, Close TJ et al (2011) Genic SNP markers and legume synteny reveal candidate genes underlying QTL for Macrophomina phaseolina resistance and maturity in cowpea [Vigna unguiculata (L) Walp.]. BMC Genomics 12:8

    Google Scholar 

  • Olaya G, Abawi GS, Weeden NF (1996) Inheritance of resistance to Macrophomina phaseolina and identification of RAPD markers linked to the resistance genes in beans. Phytopathology 86:674–679

    Article  CAS  Google Scholar 

  • Paris RL, Mengistu A, Tyler JM et al (2006) Registration of soybean germplasm line DT97-4290 with moderate resistance to charcoal rot. Crop Sci 46:2324–2325

    Article  Google Scholar 

  • Pastor-Corrales MA, Abawi GS (1988) Reactions of selected bean accessions to infection by Macrophomina phaseolina. Plant Dis 72:39–41

    Article  Google Scholar 

  • Pawlowski ML, Hill CB, Hartman GL (2015) Resistance to charcoal rot identified in ancestral soybean germplasm. Crop Sci 55:1230–1235. https://doi.org/10.2135/cropsci2014.10.0687

    Article  Google Scholar 

  • Pearson CAS, Schwenk FW, Crowe FJ et al (1984) Colonization of soybean roots by Macrophomina phaseolina. Plant Dis 68:1086–1088

    Article  Google Scholar 

  • Qin J, Song Q, Shi A et al (2017) Genome-wide association mapping of resistance to Phytophthora sojae in a soybean (Glycine max (L.) Merr.) germplasm panel from maturity groups IV and V. PLoS One 12(9):e0184613. https://doi.org/10.1371/journal.pone.0184613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radwan O, Rouhana LV, Hartman GL et al (2014) Genetic mechanisms of host-pathogen interactions for charcoal rot in soybean. Plant Mol Biol Rep 32:617–629

    Article  CAS  Google Scholar 

  • Rao DNV, Shinde VK (1985) Inheritance of charcoal rot resistance in sorghum. J Maharashtra Agric Univ 10:54–56

    Google Scholar 

  • Reznikov S, Chiesa MA, Pardo EM et al (2019) Soybean-Macrophomina phaseolina-specific interactions and identification of a novel source of resistance. Phytopathology 109(1):63–73. https://doi.org/10.1094/PHYTO-08-17-0287-R

    Article  CAS  PubMed  Google Scholar 

  • Ritchie SW, Hanway JJ, Thompson HE et al (1989) How a soybean plant develops. Spec. Rep. No. 53. Iowa State Univ. Sci. Technol. Coop. Ext. Serv., Ames, IA

    Google Scholar 

  • Saleh AA, Ahmed HU, Todd TC et al (2010) Relatedness of Macrophomina phaseolina isolates from tallgrass prairie, maize, soybean and sorghum. Mol Ecol 19:79–91

    Article  CAS  PubMed  Google Scholar 

  • Schmitt DP, Shannon G (1992) Differentiating soybean response to Heterodera glycines races. Crop Sci 32:275–277

    Article  Google Scholar 

  • Schneider R, Rolling W, Song Q et al (2016) Genome-wide association mapping of partial resistance to Phytophthora sojae in soybean plant introductions from the Republic of Korea. BMC Genomics 17:607. https://doi.org/10.1186/s12864-016-2918-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivakumar M, Kumawat G, Gireesh C et al (2018) Soybean MAGIC population: a novel resource for genetics and plant breeding. Curr Sci 114:906–908. https://doi.org/10.18520/cs/v114/i04/901-906

    Article  Google Scholar 

  • Short GE, Wyllie TD, Bristow PR (1980) Survival of Macrophomina phaseolina in soil and in residue of soybean. Phytopathology 70:13–17

    Article  Google Scholar 

  • Silva MP, Klepadlo M, Gbur EE et al (2019) QTL mapping of charcoal rot resistance in PI 567562A soybean accession. Crop Sci 59:1–6

    Article  Google Scholar 

  • Smith GS, Carvil ON (1997) Field screening of commercial and experimental soybean cultivars for their reaction to Macrophomina phaseolina. Plant Dis 81:363–368

    Article  CAS  PubMed  Google Scholar 

  • Smith GS, Wyllie TD (1999) Charcoal rot. In: Hartman GL, Sinclair JB, Rupe JC (eds) Compendium of soybean disease, 4th edn. American Phytopathological Society, St. Paul, pp 29–31

    Google Scholar 

  • Smith JR, Ray JD, Mengistu A (2018) Genotypic differences in yield loss of irrigated soybean attributable to charcoal rot. J Crop Improv. https://doi.org/10.1080/15427528.2018.1516262

  • Su G, Suh SO, Schneider RW et al (2001) Host specialization in the charcoal rot fungus, Macrophomina phaseolina. Phytopathology 91:120–126

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Li L, Zhao J et al (2014) Genetic analysis and fine mapping of RpsJS, a novel resistance gene to Phytophthora sojae in soybean [Glycine max (L.) Merr]. Theor Appl Genet 127:913–919. https://doi.org/10.1007/s00122-014-2266-2

    Article  CAS  PubMed  Google Scholar 

  • Talukdar A, Verma K, Gowda DSS et al (2009) Molecular breeding for charcoal rot resistance in soybean I. Screening and mapping population development. Indian J Genet 69:367–370

    CAS  Google Scholar 

  • Tenkouano A, Miller FR, Frederiksen RA et al (1993) Genetics of non senescence and charcoal rot resistance in sorghum. Theor Appl Genet 85(5):644–648

    Article  CAS  PubMed  Google Scholar 

  • Todd TC, Pearson CAS, Schwenk FW (1987) Effect of Heterodera glycines on charcoal rot severity in soybean cultivars resistant and susceptible to soybean cyst nematode. Ann Appl Nematol 1:35–40

    Google Scholar 

  • Tooley PW, Grau CR (1984) Field characterization of rate reducing resistance to Phytophthora megasperma f. sp. glycines in soybean. Phytopathology 74:1201–1208

    Article  Google Scholar 

  • Twizeyimana M, Hill CB, Pawlowski M et al (2012) A cut stem inoculation technique to evaluate soybean for resistance to Macrophomina phaseolina. Plant Dis 96:1210–1215

    Article  CAS  PubMed  Google Scholar 

  • Vinholes P, Rosado R, Roberts P et al (2019) Single nucleotide polymorphism-based haplotypes associated with charcoal rot resistance in Brazilian soybean germplasm. Agron J 111:182–192

    Article  CAS  Google Scholar 

  • Vuong TD, Sonah H, Meinhardt CG et al (2015) Genetic architecture of cyst nematode resistance revealed by genome wide association study in soybean. BMC Genomics 16:593. https://doi.org/10.1186/s12864-015-1811-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Mesquita ACO, Figueiró AA (2017) Genome-wide association mapping of resistance to a Brazilian isolate of Sclerotinia sclerotiorum in soybean genotypes mostly from Brazil. BMC Genomics 18:849. https://doi.org/10.1186/s12864-017-4160-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss MG, Stevenson TM (1955) Registration of soybean varieties: V. Agron J 47:541–543

    Article  Google Scholar 

  • Wen Z, Tan R, Yuan J et al (2014) Genome-wide association mapping of quantitative resistance to sudden death syndrome in soybean. BMC Genomics 15:11. https://doi.org/10.1186/1471-2164-15-809

    Article  CAS  Google Scholar 

  • Williams A, Hector PQ, Victor MG (2009) Grain sorghum varieties reaction [Sorghum bicolor (L.) Moench] to Macrophomina phaseolina (Tassi) Goid. Revista Mexicana de Fitopatología 27:148–155

    Google Scholar 

  • Wrather JA, Anderson TR, Arsyad DM et al (2001) Soybean disease loss estimates for the top ten soybean-producing countries in 1998. Canadian J Plant Pathol 23:115–121

    Article  Google Scholar 

  • Wrather JA, Shannon JG, Carter TE (2008) Reaction of drought-tolerant soybean genotypes to Macrophomina phaseolina. Plant Health Prog. https://doi.org/10.1094/PHP-2008-0618-01-RS

  • Young PA (1949) Charcoal rot of plants in east Texas. Bulletin Texas Agricultural Experimental Station No. 33

    Google Scholar 

  • Zhang J, Singh A, Mueller DS et al (2015) Genomewide association and epistasis studies unravel the genetic architecture of sudden death syndrome resistance in soybean. Plant J 84:1124–1136. https://doi.org/10.1111/tpj.13069

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Li C, Davis EL et al (2016) Genome-Wide Association Study of resistance to soybean cyst nematode (Heterodera glycines) HG type 2.5.7 in wild soybean (Glycine soja). Front Plant Sci 7:1214. https://doi.org/10.3389/fpls.2016.01214

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Han Y, Li Y et al (2015) Loci and candidate gene identification for resistance to Sclerotinia sclerotiorum in soybean (Glycine max L. Merr.) via association and linkage maps. Plant J 82:245–255. https://doi.org/10.1111/tpj.12810

    Article  CAS  PubMed  Google Scholar 

  • Zveibil A, Mor N, Gnayem N et al (2012) Survival, host–pathogen interaction, and management of Macrophomina phaseolina on strawberry in Israel. Plant Dis 96:265–272

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nataraj, V. et al. (2019). Charcoal Rot Resistance in Soybean: Current Understanding and Future Perspectives. In: Wani, S.H. (eds) Disease Resistance in Crop Plants. Springer, Cham. https://doi.org/10.1007/978-3-030-20728-1_10

Download citation

Publish with us

Policies and ethics