Skip to main content

Robust Design in the Case of Data Contamination and Model Departure

  • Chapter
  • First Online:

Part of the book series: ICSA Book Series in Statistics ((ICSABSS))

Abstract

In robust design, it is usually assumed that the experimental data are normally distributed and uncontaminated. However, in many practical applications, these assumptions can be easily violated. It is well known that normal model departure or data contamination can result in biased estimation of the optimal operating conditions of the control factors in the robust design framework. In this chapter, we investigate this possibility by examining these estimation effects on the optimal operating condition estimates in robust design. Proposed estimation methodologies for remedying the difficulties associated with data contamination and model departure are provided. Through the use of simulation, we show that the proposed methods are quite efficient when the standard assumptions hold and outperform the existing methods when the standard assumptions are violated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bendell, A., Disney, J., & Pridmore, W. A. (1987). Taguchi methods: Applications in world industry. London, UK: IFS Publications.

    Google Scholar 

  2. Dehnad, K. (1989). Quality control, robust design and the Taguchi method. Pacific Grove, CA: Wadsworth and Brooks/Cole.

    Book  Google Scholar 

  3. Taguchi, G., & Wu, Y. (1980). Introduction to off-line quality control. Nagoya: Central Japan Quality Control Association.

    Google Scholar 

  4. Taguchi, G. (1986). Introduction to quality engineering. White Plains, NY: Asian Productivity Organization.

    Google Scholar 

  5. Ross, P. J. (1988). Taguchi techniques for quality engineering. New York, NY: McGraw-Hill Book Company.

    Google Scholar 

  6. Kenett, R., & Zacks, S. (1998). Modern industrial statistics: Design and control of quality and reliability. Pacific Grove, CA: Duxbury.

    Google Scholar 

  7. Box, G. E. P. (1985). Discussion of off-line quality control, parameter design and the Taguchi methods. Journal of Quality Technology, 17, 198–206.

    Article  Google Scholar 

  8. Box, G. E. P. (1988). Signal-to-noise ratios, performance criteria, and transformations. Technometrics, 30, 1–17.

    Article  MathSciNet  Google Scholar 

  9. Vining, G. G., & Myers, R. H. (1990). Combining Taguchi and response surface philosophies: A dual response approach. Journal of Quality Technology, 22, 38–45.

    Article  Google Scholar 

  10. Pignatiello, J., & Ramberg, J. S. (1991). Top ten triumphs and tragedies of Genichi Taguchi. Quality Engineering, 4, 221–225.

    Article  Google Scholar 

  11. Myers, R. H., Khuri, A. I., & Vining, G. G. (1992). Response surface alternatives to the Taguchi robust design problem. The American Statistician, 46, 131–139.

    Google Scholar 

  12. Tiao, G. C., Bisgaard, S., Hill, W. J., Peña, D., & Stigler, S. M. (Eds.). (2000). Box on quality and discovery with design, control and robustness. New York, NY: Wiley.

    MATH  Google Scholar 

  13. Myers, R. H., & Montgomery, D. C. (2002). Response surface methodology, 2nd Edn. New York, NY: Wiley.

    MATH  Google Scholar 

  14. Gauri, S. K., & Pal, S. (2014). The principal component analysis (PCA)-based approaches for multi-response optimization: Some areas of concerns. The International Journal of Advanced Manufacturing Technology, 70(9), 1875–1887.

    Article  Google Scholar 

  15. Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response surface methodology: Process and product optimization using designed experiments, 4th Edn. New York, NY: Wiley.

    MATH  Google Scholar 

  16. Del Castillo, E., & Montgomery, D. C. (1993) . A nonlinear programming solution to the dual response problem. Journal of Quality Technology, 25, 199–204.

    Article  Google Scholar 

  17. Lin, D. K. J., & Tu, W. (1995). Dual response surface optimization. Journal of Quality Technology, 27, 34–39.

    Article  Google Scholar 

  18. Copeland, K. A. F., & Nelson, P. R. (1996). Dual response optimization via direct function minimization. Journal of Quality Technology, 28, 331–336.

    Article  Google Scholar 

  19. Kim, K., & Lin, D. K. J. (1998). Dual response surface optimization: A fuzzy modeling approach. Journal of Quality Technology, 30, 1–10.

    Article  Google Scholar 

  20. Borror, C. M., & Montgomery, D. C. (2000). Mixed resolution designs as alternative to Taguchi inner/outer array designs for robust design problems. Quality and Reliability Engineering Inetrnational, 16, 1–11.

    Article  Google Scholar 

  21. Scibilia, B., Kobi, A., Barreau, A., & Chassagnon, R. (2003). Robust designs for quality improvement. IIE Transactions, 35, 487–492.

    Article  Google Scholar 

  22. Oyeyemi, G. M. (2004). Treatment of non-normal responses from designed experiments. Journal of the Nigerian Statistical Association, 17, 8–19.

    Google Scholar 

  23. Lee, M. K., Kwon, H. M., Kim, Y. J., & J. Bae. (2005). Determination of optimum target values for a production process based on two surrogate variables. In O. Gervasi, M. L. Gavrilova, V. Kumar, A. Laganá, H. P. Lee, Y. Mun, D. Taniar, & C. J. K. Tan (Eds.), Computational Science and Its Applications – ICCSA 2005. Lecture Notes in Computer Science (Vol. 3483, pp. 232–240). Berlin, Springer.

    Book  Google Scholar 

  24. Lee, S. B., & Park, C. (2006). Development of robust design optimization using incomplete data. Computers & Industrial Engineering, 50, 345–356.

    Article  Google Scholar 

  25. Lee, M. K., Kwon, H. M., Hong, S. H., & Kim, Y. J. (2007). Determination of the optimum target value for a production process with multiple products. International Journal of Production Economics, 107(1), 173–178. Special Section on Building Core-Competence through Operational Excellence.

    Google Scholar 

  26. Lee, S. B., Park, C., & Cho, B.-R. (2007). Development of a highly efficient and resistant robust design. International Journal of Production Research, 45, 157–167.

    Article  Google Scholar 

  27. Ardakani, M. K., & Wulff, S. S. (2013). An overview of optimization formulations for multiresponse surface problems. Quality and Reliability Engineering International, 29(1), 3–16.

    Article  Google Scholar 

  28. Park, C. (2013). Determination of the joint confidence region of optimal operating conditions in robust design by bootstrap technique. International Journal of Production Research, 51, 4695–4703.

    Article  Google Scholar 

  29. Ouyang, L., Ma, Y., Byun, J.-H., Wang, J., & Tu, Y. (2016). An interval approach to robust design with parameter uncertainty. International Journal of Production Research, 54(11), 3201–3215.

    Article  Google Scholar 

  30. Ardakani, M. K. (2016). The impacts of errors in factor levels on robust parameter design optimization. Quality and Reliability Engineering International, 32(5), 1929–1944.

    Article  Google Scholar 

  31. Park, C., & Leeds, M. (2016). A highly efficient robust design under data contamination. Computers & Industrial Engineering, 93, 131–142.

    Article  Google Scholar 

  32. Park, C., Ouyang, L., Byun, J.-H., & Leeds, M. (2017). Robust design under normal model departure. Computers & Industrial Engineering, 113, 206–220.

    Article  Google Scholar 

  33. Park, C., & Cho, B.-R. (2003). Development of robust design under contaminated and non-normal data. Quality Engineering, 15, 463–469.

    Article  Google Scholar 

  34. Hampel, F. R., Ronchetti, E., Rousseeuw, P. J., & Stahel, W. A. (1986). Robust statistics: The approach based on influence functions. New York, NY: Wiley.

    MATH  Google Scholar 

  35. Huber, P. J. (1964). Robust estimation of a location parameter. Annals of Mathematical Statistics, 35, 73–101.

    Article  MathSciNet  Google Scholar 

  36. Huber, P. J., & Ronchetti, E. M. (2009). Robust statistics, 2nd Edn. New York, NY: Wiley.

    Book  Google Scholar 

  37. Rousseeuw, P., & Croux, C. (1993). Alternatives to the median absolute deviation. Journal of the American Statistical Association, 88, 1273–1283.

    Article  MathSciNet  Google Scholar 

  38. Bartlett, M. S., & Kendall, D. G. (1946). The statistical analysis of variance-heterogeneity and the logarithmic transformation. Journal of the Royal Statistical Society, 8, 128–138.

    MathSciNet  MATH  Google Scholar 

  39. Lindsay, B. G. (1994). Efficiency versus robustness: The case for minimum Hellinger distance and related methods. Annals of Statistics, 22, 1081–1114.

    Article  MathSciNet  Google Scholar 

  40. Tukey, J. W. (1960). A survey of sampling from contaminated distributions. In I. Olkin, S. Ghurye, W. Hoeffding, W. Madow, & H. Mann (Eds.), Contributions to probability and statistics (pp. 448–485). Stanford: Stanford University Press.

    Google Scholar 

  41. Park, C., Basu, A., & Basu, S. (1995). Robust minimum distance inference based on combined distances. Communications in Statistics: Simulation and Computation, 24, 653–673.

    Article  Google Scholar 

  42. Park, C., & Basu, A. (2003). The generalized Kullback-Leibler divergence and robust inference. Journal of Statistical Computation and Simulation, 73, 311–332.

    Article  MathSciNet  Google Scholar 

  43. Basu, A., Shioya, H., & Park, C. (2011). Statistical inference: The minimum distance approach. Monographs on Statistics and Applied Probability. London: Chapman & Hall.

    Google Scholar 

  44. Shamos, M. I. (1976). Geometry and statistics: Problems at the interface. In J. F. Traub (Ed.), Algorithms and complexity: New directions and recent results (pp. 251–280). New York, NY: Academic Press.

    Google Scholar 

  45. Hogg, R. V., McKean, J. W., & Craig, A. T. (2013). Introduction to mathematical statistics, 7th Edn. London: Pearson.

    Google Scholar 

  46. Hettmansperger, T. P., & McKean, J. W. (2010). Robust nonparametric statistical methods, 2nd Edn. Boca Raton, FL: Chapman & Hall/CRC.

    Book  Google Scholar 

  47. Lehmann, E. L. (1999). Elements of large-sample theory. New York, NY: Springer.

    Book  Google Scholar 

  48. Serfling, R. J. (2011). Asymptotic relative efficiency in estimation. In M. Lovric (Ed.), Encyclopedia of statistical science, Part I (pp. 68–82). Berlin: Springer.

    Chapter  Google Scholar 

  49. Huber, P. J. (1981). Robust statistics. New York, NY: Wiley.

    Book  Google Scholar 

  50. Dixon, W. J. (1960). Simplified estimation for censored normal samples. Annals of Mathematical Statistics, 31, 385–391.

    Article  MathSciNet  Google Scholar 

  51. Lèvy-Leduc, C., Boistard, H., Moulines, E., Taqqu, M. S., & Reisen, V. A. (2011). Large sample behaviour of some well-known robust estimators under long-range dependence. Statistics, 45, 59–71.

    Article  MathSciNet  Google Scholar 

  52. Huber, P. J. (1984). Finite sample breakdown of M- and P-estimators. Annals of Statistics, 12, 119–126.

    Article  MathSciNet  Google Scholar 

  53. Staudte, R. G., & Sheather, S. J. (1900). Robust estimation and testing. New York, NY: Wiley.

    MATH  Google Scholar 

  54. R Core Team. (2018). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  55. Hampel, F. R., Marazzi, A., Ronchetti, E., Rousseeuw, P. J., Stahel, W. A., & Welsch, R. E. (1982). Handouts for the instructional meeting on robust statistical methods. In The 15th European Meeting of Statisticians, Palermo, Italy.

    Google Scholar 

  56. Park, C., & Basu, A. (2011). Minimum disparity inference based on tangent disparities. International Journal of Information and Management Sciences, 22, 1–25.

    MathSciNet  MATH  Google Scholar 

  57. Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman & Hall.

    Book  Google Scholar 

  58. Anderson, T. W. (1993). An introduction to multivariate statistical analysis. London: Wiley.

    Google Scholar 

  59. Johnson, R. A., & Wichern, D. W. (2007). Applied multivariate statistical analysis, 6th Ed. Englewood Cliffs, NJ: Prentice-Hall.

    MATH  Google Scholar 

  60. DeCarlo, L. T. (1997). On the meaning and use of kurtosis. Psychological Methods, 2, 292–307.

    Article  Google Scholar 

  61. Westfall, P. H. (2014). Kurtosis and peakedness, 1095–2014. R.I.P. The American Statistician, 68, 191–195.

    Article  MathSciNet  Google Scholar 

  62. Hosking, J. R. M. (1990). L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society B, 52, 105–124.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of Professor Ouyang was supported by the National Natural Science Foundation of China under grants NSFC-71811540414 & 71702072 and the Natural Science Foundation for Jiangsu Institutions under grant BK20170810. The work of Professor Park was supported under the framework of the international cooperation program managed by the National Research Foundation of Korea (2018K2A9A2A06019662). The work of Professor Byun was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (2016R1D1A1B03935397).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ouyang, L., Park, C., Byun, JH., Leeds, M. (2019). Robust Design in the Case of Data Contamination and Model Departure. In: Lio, Y., Ng, H., Tsai, TR., Chen, DG. (eds) Statistical Quality Technologies. ICSA Book Series in Statistics. Springer, Cham. https://doi.org/10.1007/978-3-030-20709-0_15

Download citation

Publish with us

Policies and ethics