Skip to main content

Mangroves: Unique Sinks of Carbon and Nitrogen

  • Chapter
  • First Online:
Mangrove Forests in India
  • 707 Accesses

Abstract

The mangrove forest ecosystems are known to store considerably higher quantities of carbon per unit area. Apart from carbon storage potential, trees, herbs and shrubs in mangrove ecosystem play an important role in storing other elements, like nitrogen. Despite the importance of mangrove forest vegetations in storing carbon and nitrogen the economic aspects of these services have not been considered in the management decisions. The present chapter has focused on this under-researched benefit of mangroves with ground-zero level observations from Indian Sundarbans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adame, M. F., Kauffman, J. B., Medina, I., Gamboa, J. N., Torres, O., Caamal, J. P., Reza, M., & Herrera-Silveira, J. A. (2013). Carbon stocks of tropical coastal wetlands within the karstic landscape of the Mexican Caribbean. PLoS One, 8(2), e56569.

    Article  CAS  Google Scholar 

  • Aguilera-Morales, M., Casas-Valdez, M., Carrillo-Domínguez, S., Gonzáles-Acosta, B., & Pérez-Gil, F. (2005). Chemical composition and microbiological assays of marine algae Enteromorpha spp. as a potential food source. Journal of Food Composition and Analysis, 18, 79–88.

    Article  CAS  Google Scholar 

  • Alongi, D. M. (2009). The energetics of mangrove forests. Dordrecht: Springer.

    Google Scholar 

  • Ball, M. C. (1996). Comparative ecophysiology of tropical lowland moist rainforest and mangrove forest. In S. S. Mulkey, R. L. Chazdon, & A. P. Smith (Eds.), Tropical forest plant physiology (pp. 461–496). New York: Chapman and Hall.

    Chapter  Google Scholar 

  • Banerjee, K., Sengupta, K., Raha, A. K., & Mitra, A. (2013). Salinity based allometric equations for biomass estimation of Sundarban mangroves. Biomass & Bioenergy (Elsevier), 56, 382–391.

    Article  Google Scholar 

  • Barbarino, E., & Lourenço, S. O. (2009). Comparison of CHN analysis and Hach acid digestion to quantify total nitrogen in marine organisms. Limnology and Oceanography: Methods, 7(2009), 751–760.

    CAS  Google Scholar 

  • Beseres Pollack, J., Yoskowitz, D., Kim, H.-C., & Montagna, P. A. (2013). Role and value of nitrogen regulation provided by oysters (Crassostrea virginica) in the Mission-Aransas estuary, Texas,USA. PLoS One, 8, e65314. https://doi.org/10.1371/journal.pone.0065314.

    Article  CAS  Google Scholar 

  • Bhatt, J. R., & Kathiresan, K. (2011). Biodiversity of mangrove ecosystems in India. In J. R. Bhatt et al. (Eds.), Towards conservation and management of mangrove ecosystem in India. India: IUCN New Delhi.

    Google Scholar 

  • Chaudhuri, A. B., & Choudhury, A. (1994). Mangroves of the Sundarbans, India.1. Bangkok: IUCN.

    Google Scholar 

  • Chidumaya, E. N. (1990). Above ground woody biomass structure and productivity in a Ambezian woodland. Forest Ecology and Management, 36, 33–46.

    Article  Google Scholar 

  • Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4, 293–297.

    Article  CAS  Google Scholar 

  • Donato, D. C., Kauffman, J. B., Mackenzie, R. A., Ainsworth, A., & Pfleeger, A. Z. (2012). Whole-island carbon stocks in the tropical Pacific: Implications for mangrove conservation and upland restoration. Journal of Environmental Management, 97, 89–96.

    Article  CAS  Google Scholar 

  • FSI, India State of Forest Report. (2013). Forest survey of India, Dehradun.

    Google Scholar 

  • Hach, C. C., Bowden, B. K., Kopelove, A. B., & Brayton, S. T. (1987). More powerful peroxide Kjeldahl digestion method. Journal of the Association of Official Analytical Chemists, 70, 783–787.

    CAS  Google Scholar 

  • Hedges, J. I., & Stern, J. H. (1984). Carbon and nitrogen determinations of carbonate-containing solids. Limnological Oceanography, 29(3), 657–663.

    Article  CAS  Google Scholar 

  • Husch, B., Miller, C. I., & Beers, T. W. (1982). Forest mensuration (3nd ed.). New York: Wiley. 402 p.

    Google Scholar 

  • Jagtap, T. G. (1985). Ecological studies in relation to the mangrove environment along the Goa Coast, India. Ph. D thesis, Shivaji University, Kolhapur, pp. 37–44.

    Google Scholar 

  • Kauffman, J. B., Heider, C., Cole, T. G., Dwire, K. A., & Donato, D. C. (2011). Ecosystem carbon stocks of micronesian mangrove forests. Wetlands, 31, 343–352.

    Article  Google Scholar 

  • Ketterings, Q. M., Coe, R., van Noordwijk, M., Ambagau, Y., & Palm, C. A. (2001). Reducing uncertainty in the use of allometric biomass equations for predicting aboveground tree biomass in mixed secondary forests. Forest Ecology and Management, 146, 199–209.

    Article  Google Scholar 

  • Komiyama, A., Poungparn, S., & Kato, S. (2005). Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology, 21, 471–477.

    Article  Google Scholar 

  • Krauss, K. W., & Ball, M. C. (2013). On the halophytic nature of mangroves. Trees, 27, 7–11.

    Article  Google Scholar 

  • Lourenço, S. O., Lavín, P. L., Marquez, U. M. L., & Aidar, E. (2004). Distribution of intracellular nitrogen in marine microalgae: Calculation of new nitrogen-to-protein conversion factors. European Journal of Phycology, 39, 17–32.

    Article  Google Scholar 

  • Mitra, A. (2000). Chapter 62: The Northeast coast of the Bay of Bengal and deltaic Sundarbans. In C. Sheppard (Ed.) Seas at the Millennium – An environmental evaluation. Coventry: University of Warwick, Elsevier Science, 143–157.

    Google Scholar 

  • Mitra, A. (2013). In Sensitivity of mangrove ecosystem to changing climate; published by Springer (ISBN 978-81-322-1508-0), pp. 323.

    Google Scholar 

  • Mitra, A., & Banerjee, K. (2005). Living resources of the sea: Focus Indian Sundarbans. WWF-India, Sundarbans Landscape Project, Canning Field Office, West Bengal.

    Google Scholar 

  • Mitra, A., & Zaman, S. (2015). Blue carbon reservoir of the blue planet (pp. 1–299). India: Springer New Delhi. https://doi.org/10.1007/978-81-322-2107-4; ISBN- 978-81-322-2106-7.

    Book  Google Scholar 

  • Mitra, A., & Zaman, S. (2016). Basics of marine and estuarine ecology (pp. 1–481). India: Springer New Delhi, ISBN 978-81-322-2707-6.

    Google Scholar 

  • Moore, F. C., & Diaz, D. B. (2015). Temperature impacts on economic growth warrant stringent mitigation policy. Nature Climate Change, 5, 127–131.

    Article  Google Scholar 

  • Newell, R. I. E., Cornwell, J. C., & Owens, M. S. (2002). Influence of simulated bivalve biodeposition and microphyto-benthos on sediment nitrogen dynamics: A laboratory study. Limnology and Oceanography, 47, 1367–1379. https://doi.org/10.4319/lo.2002.47.5.1367.

    Article  Google Scholar 

  • Piehler, M. F., & Smyth, A. R. (2011). Habitat-specific distinctions in estuarine denitrification affect both ecosystem function and services. Ecosphere, 2, 1–17. https://doi.org/10.1890/ES10-00082.1.

    Article  Google Scholar 

  • Puwastien, P., Judprasong, K., Kettwan, E., Vasanachitt, K., Nakngamanong, Y., & Bhattacharjee, L. (1999). Proximate composition of raw and cooked Thai freshwater and marine fish. Journal of Food Composition and Analysis, 12, 9–16.

    Article  Google Scholar 

  • Sengupta, K., Roy Chowdhury, M., Bhattacharyya, S. B., Raha, A., Zaman, S., & Mitra, A. (2013). Spatial variation of stored carbon in Avicennia alba of Indian Sundarbans. Discovery Nature, 3(8), 19–24, (ISSN: 2319-5703).

    Google Scholar 

  • Spalding, M. D., Blasco, F., & Field, C. D. (1997). World mangrove atlas. Okinawa: The International Society for Mangrove Ecosystems. 178 pp.

    Google Scholar 

  • Trivedi, S., Zaman, S., Ray Chaudhuri, T., Pramanick, P., Fazli, P., Amin, G., & Mitra, A. (2016). Inter-annual variation of salinity in Indian Sundarbans. Indian Journal of Geo-Marine Science, 45(3), 410–415.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitra, A. (2020). Mangroves: Unique Sinks of Carbon and Nitrogen. In: Mangrove Forests in India. Springer, Cham. https://doi.org/10.1007/978-3-030-20595-9_7

Download citation

Publish with us

Policies and ethics