Skip to main content

Mangroves: A Potential Vegetation Against Sea Level Rise

  • Chapter
  • First Online:
Mangrove Forests in India

Abstract

Mangroves possess the ability to adapt to changes in sea level by growing upward in place, or by expanding landward or seaward. Mangroves produce peat from decaying litter fall and root growth and by trapping sediment from the ambient water. The process of building peat helps mangroves keep up with sea level rise. Mangroves can also expand their range despite sea level rise if the rate of sediment accretion is sufficient to keep up with sea level rise and if migration is not blocked by local conditions, such as infrastructure (e.g., roads, agricultural fields, dikes, urbanization, seawalls, and shipping channels) and topography (e.g., steep slopes). The potential of mangroves to combat sea level rise has been explained in this chapter with several regional case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alongi, D. M. (1998). Coastal Ecosystem Processes. New York, USA: CRC Press, 419 pp.

    Google Scholar 

  • Antonov, J. I., Levitus, S., & Boyer, T. P. (2005). Steric variability of the world ocean, 1955–2003. Geophysical Research Letters, 32(12), L12602. https://doi.org/10.1029/2005GL023112.

    Article  Google Scholar 

  • Banerjee, M. (1999). A report on the impact of Farakka barrage on the human fabric. Report submitted to World Commission on Dams on behalf of South Asian Network on Dams, Rivers and People (SANDRP), p. 29.

    Google Scholar 

  • Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological Monographs, 81(2), 169–193.

    Article  Google Scholar 

  • Belperio, A. P. (1993). Land subsidence and sea-level rise in the Port-Adelaide estuary – implications for monitoring the greenhouse-effect. Australian Journal of Earth Sciences, 40(4), 359–368.

    Article  Google Scholar 

  • Blasco, F., Saenger, P., & Janodet, E. (1996). Mangroves as indicators of coastal change. Catena, 27, 167–178.

    Article  Google Scholar 

  • Cahoon, D. R. (2006). A review of major storm impacts on coastal wetland elevations. Estuaries and Coasts, 29, 889–898.

    Article  Google Scholar 

  • Chaudhuri, A. B., & Choudhury, A. (1994). Mangroves of the Sundarbans (Vol. I). India: IUCN- The World Conservation Union.

    Google Scholar 

  • Chen, R., & Twilley, R. R. (1998). A gap dynamics model of mangrove forest development along the gradients of soil salinity and nutrient resources. Journal of Ecology, 86, 37–51.

    Article  Google Scholar 

  • Dasgupta, S., Laplante, B., Meisner, C., Wheeler, D., & Yan, J. (2009). The impact of sea level rise on developing countries: A comparative analysis. Climatic Change, 93, 379–388.

    Article  Google Scholar 

  • Davis, C. H., Li, Y., McConnell, J. R., Frey, M. M., & Hannah, E. (2005). Snowfall-driven growth in East Antarctica ice sheet mitigates recent sea-level rise. Science, 308(5730), 1898–1901.

    Article  CAS  Google Scholar 

  • Dutton, I. M. (1992). Developing a management strategy for coastal wetlands. In C. Shafer & Y. Wang (Eds.), Island environment and coastal development (pp. 285–303). Nanjing (China): Nanjing University Press.

    Google Scholar 

  • Ellison, J. (1993). Mangrove retreat with rising sea level, Bermuda. Estuarine, Coastal and Shelf Science, 37, 75–87.

    Article  CAS  Google Scholar 

  • Ellison, J. C. (2000). How South Pacific mangroves may respond to predicted climate change and sea level rise, Chapter 15. In A. Gillespie & W. Burns (Eds.), Climate change in the South Pacific: Impacts and responses in Australia, New Zealand, and small islands states (pp. 289–301). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Ellison, J. C., & Stoddart, D. R. (1991). Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogues and implications. Journal of Coastal Research, 7, 151–165.

    Google Scholar 

  • Fagherazzi, S., FitzGerald, D. M., Fulweiler, R. W., Hughes, Z., Wiberg, P. L., McGlathery, K. J., Morris, J. T., Tolhurts, T. J., Deegan, L. A., & Johnson, D. S. (2013). Ecogeomorphology of salt marshes. Treatise on Geomorphology, 12, 182–200.

    Article  Google Scholar 

  • Fergusson, J. (1863). Recent changes in the delta of the Ganges. Quarterly Journal of the Geological Society, 19, 321–354.

    Article  Google Scholar 

  • Fujimoto, K., Miyagi, T., Kikuchi, T., & Kawana, T. (1996). Mangrove habitat formation and response to Holocene sea-level changes on Kosrae Island, Micronesia. Mangroves and Salt Marshes, 1(1), 47–57.

    Article  Google Scholar 

  • Gilman, E. (2004). Assessing and managing coastal ecosystem response to projected relative sea-level rise and climate change. Prepared for the International Research Foundation for Development Forum on small island developing states: Challenges, Prospects and International Cooperation for Sustainable Development. Contribution to the Barbados + 10 United Nations International Meeting on sustainable development of small island developing states, Port Louis, Mauritius, 10–14 January 2005.

    Google Scholar 

  • Hanna, E., Huybrechts, P., Janssens, I., Cappelen, J., Steffen, K., & Stephens, A. (2005). Runoff and mass balance of the Greenland ice sheet: 1958–2003. Journal of Geophysical Research, 110, D13108.

    Article  Google Scholar 

  • Hansen, J. (2006). Can we still avoid dangerous human-made climate change? Presentation on December 6, 2005 to the American Geophysical Union in San Francisco, California. Available at: http://www.columbia.edu/~jeh1/newschool-text-and-sides.pdf.

  • Hansen, J., Nazarenko, L., Ruedy, R., Sato, M., Willis, J., Del Genio, A., Koch, D., Lacis, A., Lo, K., Menon, S., Novakov, T., Perlwitz, J., Russell, G., Schmidt, G. A., & Tausnev, N. (2005). Earth’s energy imbalance: Confirmation and implications. Science, 308, 1431–1435. https://doi.org/10.1126/science.

  • Hendry, M. D., & Digerfeldt, G. (1989). Palaeogeography and palaeoenvironments of a tropical coastal wetland and adjacent shelf during Holocene submergence, Jamaica. Palaeogeography, Palaeoclimatology, Palaeoecology, 73, 1–10.

    Article  Google Scholar 

  • Houghton, J., Ding, Y., Griggs, D., Noguer, M., van der Linden, P., Dai, X., Maskell, K., & Johnson, C. (Eds.). (2001). Climate change: The scientific basis. Published for the Intergovernmental Panel on Climate Change (p. 881). Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • Howat, I., Joughin, I., & Scambos, T. (2007). Rapid changes in ice discharge from Greenland outlet glaciers. Science, 315, 1559–1561.

    Article  CAS  Google Scholar 

  • http://www.grida.no/climate/ipcc_tar/wg1/295.htm.

  • Intergovernmental Panel on Climate Change (IPCC). (1997). The regional impacts of climate change: Assessment of vulnerability, Cambridge: Cambridge University Press, UK.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change), Climate Change. (2007). Impacts, adaptation and vulnerability, contribution of Working Group II to the fourth assessment report of the Intergovernmental Panel on Climate Change (p. 976). Geneva, Cambridge: Cambridge University Press, UK.

    Google Scholar 

  • IPCC. (2001). The scientific basis. Contribution of Working Group I to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ishii, M., Kimoto, M., Sakamoto, K., & Iwasaki, S. I. (2006). Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. Journal of Oceanography, 62(2), 155–170.

    Article  Google Scholar 

  • Jones, M. (2002). Climate change - follow the mangroves and sea the rise. National Parks Journal, 46(6), 57–66.

    Google Scholar 

  • Kennish, M. J. (2002). Environmental threats and environmental future of estuaries. Environmental Conservation, 29(1), 78–107.

    Article  Google Scholar 

  • Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R., & Fagherazzi, S. (2016). Overestimation of marsh vulnerability to sea level rise. Nature Climate Change, 6, 253–260.

    Article  Google Scholar 

  • Krabill, W., Hanna, E., Huybrechts, P., Abdalati, W., Cappelen, J., Csatho, B., Frederick, E., Manizade, S., Martin, C., Sonntag, J., Swift, R., Thomas, R., & Yunge, J. (2004). Greenland ice sheet: Increased coastal thinning. Geophysical Research Letters, 31, L24402.

    Article  Google Scholar 

  • Krauss, K. W., Allen, J. A., & Cahoon, D. R. (2003). Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuarine, Coastal and Shelf Science, 56, 251–259.

    Article  Google Scholar 

  • Lombard, A., Cazenave, A., Traon, P. Y. L., Guinehut, S., & Cecile, C. (2006). Perspectives on present-day sea level change: A tribute to Christial le Provost. Ocean Dynamics, 56(5–6), 445–451.

    Article  Google Scholar 

  • Manson, F. J., Loneragan, N. R., & Phinn, S. R. (2003). Spatial and temporal variation in distribution of mangroves in Moreton Bay, subtropical Australia: A comparison of pattern metrics and change detection analyses based on aerial photographs. Estuarine, Coastal and Shelf Science, 57, 653–666.

    Article  Google Scholar 

  • Meier, M., Dyurgerov, M., Rick, U., O’Neel, S., Preffer, W., Anderson, R., Anderson, S., & Glazovsky, A. (2007). Glaciers dominate eustatic sea level rise in the 21st century. Science, 317, 1064–1067.

    Article  CAS  Google Scholar 

  • Menezes, M., Berger, U., & Worbes, M. (2003). Annual growth rings and long-term growth patterns of mangrove trees from the Bragança peninsula, North Brazil. Wetlands Ecology and Management, 11, 233–242.

    Article  Google Scholar 

  • Morgan, J. P., & McIntire, W. G. (1959). Quaternary geology of the Bengal Basin, East Pakistan and Burma. Geological Society of America Bulletin, 70, 319–342.

    Article  Google Scholar 

  • Ning, Z. H., Turner, R. E., Doyle, T., & Abdollahi, K. K. (2003). Integrated assessment of the climate change impacts on the Gulf Coast Region: Gulf Coast Climate Change Assessment Council (GCRCC) and Louisiana State University (LSU) Graphic Services, United States of America.

    Google Scholar 

  • Oldham, R. D. (1893). A manual of geology of India. Calcutta: Office of the Superintendent of Government printing, Calcutta, India.

    Google Scholar 

  • Overpeck, J., Otto- Bliesner, B., Miller, G., Muhs, D., Alley, R., & Kichl, J. (2006). Paleoclimatic evidence for future ice sheet instability and rapid sea level rise. Science, 311, 1064–1067.

    Article  Google Scholar 

  • Parkinson, R. W., DeLaune, R. D., & White, J. C. (1994). Holocene sea-level rise and the fate of mangrove forests within the wider Caribbean region. Journal of Coastal Research, 10, 1077–1086.

    Google Scholar 

  • Pernetta, J. C. (1993). Mangrove forests, climate change and sea-level rise: Hydrological influences on community structure and survival, with examples from the Indo-West Pacific. A Marine Conservation and Development Report. Gland: IUCN. vii + 46 pp.

    Google Scholar 

  • Pontee, N. (2013). Defining coastal squeeze: A discussion. Ocean and Coastal Management, 84, 204–207.

    Article  Google Scholar 

  • Qasim, S. Z. (2004). Handbook of tropical estuarine biology (Vol. 131). New Delhi: Narendra Publishing House.

    Google Scholar 

  • Raha, A., Das, S., Banerjee, K., & Abhijit, M. (2002). Climate change impacts on Indian Sunderbans: A time series analysis (1924–2008). Biodiversity and Conservation, 3–21.

    Google Scholar 

  • Rignot, E., & Kanagaratnam, P. (2006). Changes in the velocity structure of the Greenland Ice Sheet. Science, 311, 986–990.

    Article  CAS  Google Scholar 

  • Semeniuk, V. (1994). Predicting the effect of sea-level rise on mangroves in Northwestern Australia. Journal of Coastal Research, 10(4), 1050–1076.

    Google Scholar 

  • Snedaker, S. C. (1995). Mangroves and climate change in the Florida and Caribbean region: Scenarios and hypotheses. Hydrobiologia, 295, 43–49.

    Article  Google Scholar 

  • Stroeve, J., Holland, M., Meier, W., Scambos, T., & Serreze, M. (2007). Arctic sea ice decline: Faster than forecast. Geophysical Research Letters, 34, L09501.

    Article  Google Scholar 

  • United Nations Environment Programme (UNEP). (1994). Assessment and monitoring of climatic change impacts on mangrove ecosystems. UNEP Regional Seas Reports and Studies. Report no. 154.

    Google Scholar 

  • Velicogna, I., & Wahr, J. (2006). Measurements of time variable gravity show mass loss in Antarctica. Science, 311, 1754–1756.

    Article  CAS  Google Scholar 

  • Vicente, V. P. (1989). Ecological effects of sea-level rise and sea surface temperatures on mangroves, coral reefs, seagrass beds and sandy beaches of Puerto Rico: A preliminary evaluation. Science- Ciencia, 16, 27–39.

    Google Scholar 

  • Wadia, D. N. (1961). Geology of India, Mac Millan, London.

    Google Scholar 

  • Willis, J. K., Roemmich, D., & Cornuelle, B. (2004). International variability in upper-ocean heat content, temperature and thermosteric expansion on global scales. Journal of Geophysical Research, 109, C12036. https://doi.org/10.1029/2003JC002260.

    Article  Google Scholar 

  • Woodroffe, C. D. (1990). The impact of sea-level rise on mangrove shoreline. Progress in Physical Geography, 14, 483–502.

    Article  Google Scholar 

  • Woodroffe, C. D. (1995). Response of tide-dominated mangrove shorelines in northern Australia to anticipated sea-level rise. Earth Surface Processes and Landforms, 20(1), 65–85.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitra, A. (2020). Mangroves: A Potential Vegetation Against Sea Level Rise. In: Mangrove Forests in India. Springer, Cham. https://doi.org/10.1007/978-3-030-20595-9_6

Download citation

Publish with us

Policies and ethics