Skip to main content

Abstract

The Hindu-Kush Himalaya region’s land cover is comprised of 54% rangeland, 25% agricultural land, 14% forest, 5% permanent snow and 1% water bodies. The Himalayans contain some of the largest water reservoirs, which are critical for HKH countries. Amidst these, wetlands have remained important to ecosystem services and the overall water cycle of the basins. Beside their cultural and provisioning amenities, wetlands are important carbon reservoirs, accounting for 20–30% of the global carbon pool. They act as a sink for atmospheric carbon, thus can influence GHG emissions, especially CH4, and, thus, should be managed properly. However, substantial data gaps remain in quantifying carbon sequestration and the potential of CH4 emission. Furthermore, studies on CH4 fluxes in high-altitude wetlands, particularly in remote areas, remain inconclusive. Hence, more research is required to understand the role of wetlands in term of GHG emissions and carbon sequestration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrawal, D.K., M.S. Lodhi, and S. Panwar. 2010. Are EIA studies sufficient for projected hydropower development in the Indian Himalayan region. Current Science 98: 154–161.

    Google Scholar 

  • Asad, A.K., and A. Sana. 2014. Wetlands of Pakistan: distribution, degradation and management. Pakistan. Geographical Review 69 (1): 28–45.

    Google Scholar 

  • Baggs, E.M. 2011. Soil microbial sources of nitrous oxide: Recent advances in knowledge, emerging challenges and future direction. Current Opinion in Environmental Sustainability 3 (5): 321–327.

    Article  Google Scholar 

  • Barik, N.K., P.K. Katiha, 2003. Management of fisheries of floodplain wetlands: Institutional issues and options for Assam. In A Profile of People, Technologies and Policies in Fisheries Sector in India, 141–158.

    Google Scholar 

  • Bassi, N., M.D. Kumar, A. Sharma, et al. 2014. Status of wetlands in India: A review of extent, ecosystem benefits, threats and management strategies. Journal of Hydrology: Regional Studies 2: 1–19.

    Google Scholar 

  • Bhandari, B. 2009. Wise use of wetlands in Nepal. Banko Janakari 19 (3): 10–17.

    Google Scholar 

  • Boere, G.C., C.A. Galbraith, D.A. Stroud, et al. 2006. Waterbirds around the world, 960pp. Edinburgh, UK: The Stationery Office.

    Google Scholar 

  • Bridge, L. K., Stroud, D., Galbraith, C. A., and Boere, G. 2006. Waterbirds around the world. The Stationery Office.

    Google Scholar 

  • Bridgham, S.D., H. Cadillo-Quiroz, J.K. Keller, et al. 2013. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology 19: 1325–1346.

    Article  Google Scholar 

  • Byomkesh, T., N. Nakagoshi, and R.M. Shahedur. 2009. State and management of wetlands in Bangladesh. Landscape and Ecological Engineering 5 (1): 81–90.

    Article  Google Scholar 

  • Ding, W.X., Z.C. Cai, and D.X. Wang. 2004. Preliminary budget of methane emissions from natural wetlands in China. Atmospheric Environment 38: 751–759.

    Article  CAS  Google Scholar 

  • Erwin, K.L. 2009. Wetlands and global climate change: The role of wetland restoration in a changing world. Wetlands Ecology and Management 17 (1): 71–84.

    Article  Google Scholar 

  • Finlayson, C.M., and A.G. Van der Valk. 1995. Wetland classification and inventory: A summary. Vegetatio 118 (1–2): 185–192.

    Article  Google Scholar 

  • Gopal, B., A. Chatterjee, and P. Gautam. 2008. Sacred waters of the India Himalaya. New Delhi: WWF-India.

    Google Scholar 

  • Gopal, B., R. Shilpakar, E. Sharma, et al. 2010. Functions and services of wetlands in the Eastern Himalayas: Impacts of climate change. Climate change impact and vulnerability in the Eastern Himalayas-Technical Report 3. Kathmandu: ICIMOD.

    Google Scholar 

  • Gujja, B. 2007. Conservation of high-altitude wetlands: Experiences of the WWF network. Mountain Research and Development 27 (4): 368–371.

    Article  Google Scholar 

  • Hirota, M., Y.H. Tang, Q.W. Hu, et al. 2004. Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biology & Biochemistry 36: 737–748.

    Article  CAS  Google Scholar 

  • IPCC, W.G.I. 2013. Contribution to the IPCC fifth assessment report. Climate change, 36.

    Google Scholar 

  • Islam, S.N., and A. Gnauck. 2008. Mangrove wetland ecosystems in Ganges-Brahmaputra delta in Bangladesh. Frontiers of Earth Science in China 2 (4): 439–448.

    Article  Google Scholar 

  • Jha, S. 2009. Status and conservation of lowland terai wetlands in Nepal. Our Nature 6 (1): 67–77.

    Article  Google Scholar 

  • Jha, C.S., S.R. Rodda, K.C. Thumaty, et al. 2014. Eddy covariance-based methane flux in Sundarbans mangroves, India. Journal of Earth System Science 123 (5): 1089–1096.

    Article  CAS  Google Scholar 

  • Jin, H.J., G.D. Cheng, B.Q. Xu, et al. 1998. Study on CH4 fluxes from alpine wetlands at the Huashixia permafrost, Qinghai-Tibetan plateau. Journal of Glaciology and Geocryology (in Chinese) 20: 172–174.

    Google Scholar 

  • Kayranli, B., M. Scholz, A. Mustafa, et al. 2010. Carbon storage and fluxes within freshwater wetlands: A critical review. Wetlands 30 (1): 111–124.

    Article  Google Scholar 

  • Khan, A.A., and S. Arshad. 2014. Wetlands of Pakistan: Distribution, degradation and management. Pakistan Geographical Review 69 (1): 28–45.

    Google Scholar 

  • Li, Z., J. Xu, R.L. Shilpakar, et al. 2014. Mapping wetland cover in the greater Himalayan region: A hybrid method combining multispectral and ecological characteristics. Environmental Earth Sciences 71 (3): 1083–1094.

    Article  Google Scholar 

  • Mander, Ü., G. Dotro, Y. Ebie, et al. 2014. Greenhouse gas emission in constructed wetlands for wastewater treatment: A review. Ecological Engineering 66: 19–35.

    Article  Google Scholar 

  • Mao, D., Z. Wang, J. Wu, et al. 2018. China’s wetlands loss to urban expansion. Land Degradation and Development 29 (8): 2644–2657.

    Article  Google Scholar 

  • MEA. 2005. Ecosystems and human well-being: wetlands and water. World Resources Institute.

    Google Scholar 

  • Melton, J.R., R. Wania, E.L. Hodson, et al. 2013. Present state of global wetland extent and wetland methane modelling: Conclusions from a model intercomparing project (WETCHIMP). Biogeosciences 10: 753–788.

    Article  Google Scholar 

  • Meng, W., M. He, B. Hu, et al. 2017. Status of wetlands in China: A review of extent, degradation, issues and recommendations for improvement. Ocean and Coastal Management 146: 50–59.

    Article  Google Scholar 

  • Mitra, S., R. Wassmann, and P.L. Vlek. 2005. An appraisal of global wetland area and its organic carbon stock. Current Science 88 (1): 25–35.

    CAS  Google Scholar 

  • Mitsch, W.J., J.G. Gosselink, L. Zhang, and C.J. Anderson. 2009. Wetland ecosystems. Wiley.

    Google Scholar 

  • Mitsch, W.J., B. Bernal, A.M. Nahlik, et al. 2013. Wetlands, carbon, and climate change. Landscape Ecology 28 (4): 583–597.

    Article  Google Scholar 

  • Moore, P., and R. Garratt. 2006. Biomes of the earth. Wetlands. Warsaw: Livro.

    Google Scholar 

  • Myhre, G., D. Shindell, F.M. Bréon, et al. 2013. Anthropogenic and natural radiative forcing. In Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment.

    Google Scholar 

  • Paudel, N., S. Adhikaril, and G. Paudel. 2017. Ramsar lakes in the foothills of Himalaya, Pokhara-Lekhnath, Nepal: An overview. Janapriya Journal of Interdisciplinary Studies 6: 134–147.

    Article  Google Scholar 

  • Qamer, F.M., F.M. Qamer, M.S. Ashraf, et al. 2008. Pakistan wetlands GIS-a multi-scale national wetlands inventory. Wetlands 10: 3–6.

    Google Scholar 

  • Ramsar, C. M. 2006. The Ramsar convention manual: a guide to the convention on wetlands. In T, editor. Ramsar convention secretariat (pp. 6–8).

    Google Scholar 

  • Ramsar Convention Secretariat. 2013. The Ramsar convention manual. In The Ramsar convention manual: A guide to the convention on wetlands (Ramsar, Iran, 1971), Vol. 109, 6th ed. http://www.ramsar.org.

  • Segers, R. 1998. Methane production and methane consumption: A review of processes underlying wetland methane fluxes. Biogeochemistry 41 (1): 23–51.

    Article  CAS  Google Scholar 

  • Sherab, N. Wangdi, N. Norbu 2011. Inventory of high altitude wetlands in Bhutan. The Wetlands Sky High: Mapping Wetlands in Bhutan.

    Google Scholar 

  • Singh, S.N., K. Kulshreshtha, and S. Agnihotri. 2000. Seasonal dynamics of methane emission from wetlands. Chemosphere-Global Change Science 2 (1): 39–46.

    Article  CAS  Google Scholar 

  • Song, W., H. Wang, G. Wang, L. Chen, Z. Jin, Q. Zhuang, and J.S. He. 2015. Methane emissions from an alpine wetland on the Tibetan Plateau: Neglected but vital contribution of the nongrowing season. Journal of Geophysical Research: Biogeosciences 120 (8): 1475–1490.

    CAS  Google Scholar 

  • Space Applications Centre (SAC). 2013. National wetland inventory and assessment high altitude Himalayan lakes. http://www.sac.gov.in.

  • Tan, Y., X. Wang, Z. Yang, et al. 2011. Research progress in cold region wetlands, China. Sciences in Cold and Arid Regions 3 (5): 441–447.

    Google Scholar 

  • Thomas, D.S., C. Twyman, H. Osbahr, et al. 2007. Adaptation to climate change and variability: Farmer responses to intra-seasonal precipitation trends in South Africa. Climatic Change 83 (3): 301–322.

    Article  Google Scholar 

  • Trisal, C.L., and T.H. Manihar. 2004. The atlas of Loktak lake. New Delhi: Wetlands International-South Asia, and Loktak Development Authority.

    Google Scholar 

  • Uddin, K., S.M. Wahid, M.S.R. Murthy, et al. 2015. Mapping of koshi basin wetlands using remote sensing. In 5th International Conference on Water & Flood Management (ICWFM-2015)

    Google Scholar 

  • Wei, D., T. Tarchen, D. Dai, et al. 2015. Revisiting the role of CH4 emissions from alpine wetlands on the Tibetan Plateau: Evidence from two in situ measurements at 4758 and 4320 m above sea level. Journal of Geophysical Research: Biogeosciences 120 (9): 1741–1750.

    CAS  Google Scholar 

  • Xu, J., R.E. Grumbine, A. Shrestha, et al. 2009. The melting Himalayas: Cascading effects of climate change on water, biodiversity, and livelihoods. Conservation Biology 23 (3): 520–530.

    Article  CAS  Google Scholar 

  • Ye Htut Deputy Director Nature and wildlife Conservation Division I. 2013. Water is life: Too much or too little, every drop counts.

    Google Scholar 

  • Zhou, W., L. Cui, Y. Wang, et al. 2017. Methane emissions from natural and drained peatlands in the Zoigê, eastern Qinghai-Tibet Plateau. Journal of Forestry Research 28 (3): 539–547.

    Article  CAS  Google Scholar 

  • Zhu, D., N. Wu, N. Bhattarai, et al. 2015. A comparative study of daytime-based methane emission from two wetlands of Nepal Himalaya. Atmospheric Environment 106: 196–203.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanhuan Shang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iqbal, A., Shang, Z. (2020). Wetlands as a Carbon Sink: Insight into the Himalayan Region. In: Shang, Z., Degen, A., Rafiq, M., Squires, V. (eds) Carbon Management for Promoting Local Livelihood in the Hindu Kush Himalayan (HKH) Region. Springer, Cham. https://doi.org/10.1007/978-3-030-20591-1_7

Download citation

Publish with us

Policies and ethics