Skip to main content

Using Adaptive Integration of Variables Algorithm for Analysis and Optimization of 2D Irregular Nesting Problem

  • Conference paper
  • First Online:
Advances in Neuroergonomics and Cognitive Engineering (AHFE 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 953))

Included in the following conference series:

  • 1491 Accesses

Abstract

In this article a new evolutionary technique using 2D irregular-shaped nesting problem optimization algorithm applied on material cutting processes having processes like cutting of irregular foils pieces and complex geometrical shapes is proposed. This technique is adaptive and improves results of material cutting process and its optimization in comparison to other methods reflected in the earlier literature. A formalization and mathematical modelling are based on CAD/CAPP/CAM/CAP integration methodology for irregular two-dimensional pieces produced as a multilevel optimization with constraints of component part and the bi-level distribution and cutting process on foils. The decision of selection and the final solutions using adaptive algorithm based on dynamical modification of the objectives during the pieces’ distribution and using the population obtained for the elaboration of cutting trajectories of the cutter device. This procedure defines a new approach for the bi-level optimization of geometric iterative increasing polygon pieces’ configurations using the particular case of the Integration of Variables method called Exploration of a Function of Variable Codes algorithm. As final result a new optimal manufacturing integration scheme that include human-machine interaction as a component part is deducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jie, L., Jialin, H., Yaoguang, H., Guangquan, Z.: Multilevel decision-making: a survey. Inf. Sci. 346, 463–487 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Lu, J., Shi, C., Zhang, G.: On bi-level multi-follower decision making: general framework and solutions. Inf. Sci. 176, 1607–1627 (2006)

    Article  Google Scholar 

  3. Lu, J., Zhang, G., Montero, J., Garmendia, L.: Multifollower trilevel decision making models and system. IEEE Trans. Ind. Inf. 8, 974–985 (2006)

    Article  Google Scholar 

  4. Kalashnikov, V.V., Dempe, S., Pérez-Valdés, G.A., Kalashnykova, N.I., Camacho-Vallejo, J.F.: Bi-level programming and applications. Math. Prob. Eng. 181, 423, 442 (2015)

    MATH  Google Scholar 

  5. Glackin, J., Ecker, J.G., Kupferschmid, M.: Solving bi-level linear programs using multiple objective linear programming. J. Optim. Theory Appl. 140, 197–212 (2009)

    Article  MathSciNet  Google Scholar 

  6. Wan, Z., Wang, G., Sun, B.: A hybrid intelligent algorithm by combining particle swarm optimization with chaos searching technique for solving non-linear bi-level programming problems. Swarm Evol. Comput. 8, 26–32 (2013)

    Article  Google Scholar 

  7. Angulo, E., Castillo, E., García-Ródenas, R., Sánchez-Vizcaíno, J.: A continuous bi-level model for the expansion of highway networks. Comput. Oper. Res. 41, 262–276 (2014)

    Article  MathSciNet  Google Scholar 

  8. Fontaine, P., Minner, S.: Benders decomposition for discrete–continuous linear bi-level problems with application to traffic network design. Transp. Res. Part B: Methodol. 70, 163–172 (2014)

    Article  Google Scholar 

  9. NieP, Y.: Dynamic discrete-time multi-leader–follower games with leaders in turn. Comput. Math Appl. 61, 2039–2043 (2015)

    MathSciNet  Google Scholar 

  10. Nishizaki, I., Sakawa, M.: Computational methods through genetic algorithms for obtaining Stackelberg solutions to two-level integer programming problems. Cybern. Syst. 36, 565–579 (2005)

    Article  Google Scholar 

  11. Bard, J.F.: Practical Bi-level Optimization: Algorithms and Applications. Kluwer Academic Publishers, Dordrecht (1998)

    Book  Google Scholar 

  12. Audet, C., Haddad, J., Savard, G.: Disjunctive cuts for continuous linear bi-level programming. Optim. Lett. 1, 259–267 (2007)

    Article  MathSciNet  Google Scholar 

  13. Zhang, T., Hu, T., Guo, X., Chen, Z., Zheng, Y.: Solving high dimensional bi-level multi-objective programming problem using a hybrid particle swarm optimization algorithm with crossover operator. Knowl. Based Syst. 53, 13–19 (2013)

    Article  Google Scholar 

  14. Han, J., Lu, J., Hu, Y., Zhang, G.: Tri-level decision-making with multiple followers: model, algorithm and case study. Inf. Sci. 311, 182–204 (2016)

    Article  Google Scholar 

  15. Arzola, R.J., Simeón, R.E., Maceo, A.: El Método de Integración de Variables: una generalización de los Algoritmos Genéticos. In: Proceedings of Intensive Workshop: Optimal Design of Materials and Structures, París (2003)

    Google Scholar 

  16. Arzola-Ruiz, J.: Análisis y Síntesis de Sistemas de ingeniería (2009). http://www.bibliomaster.com

  17. Arzola-Ruiz, J.: Sistemas de Ingeniería. Editorial Felix Valera, La Habana (2000)

    Google Scholar 

  18. Arzola-Ruiz, J.: Selección de Propuestas. Editorial_Científico-Técnica, La Habana (1989)

    Google Scholar 

  19. Lastre-Aleaga, A.: Optimización de la distribución y corte de piezas irregulares en chapas. Ph.D. thesis, Holguín (2009)

    Google Scholar 

  20. Mitchell, F.H.: CIM Systems. An introduction to Computer Integrated Manufacturing. Prentice Hall, Upper Saddle River (1991)

    Google Scholar 

  21. Bennell, J.A., Oliveira, J.F.: The geometry of nesting problems: a tutorial. Eur. J. Oper. Res. 184(2), 397–415 (2008)

    Article  MathSciNet  Google Scholar 

  22. Arzola-Ruiz, J.: Sistemas de Ingeniería, 2nd edn. Editorial Félix Valera, La Habana (2012)

    Google Scholar 

  23. Lastres–Aleaga, A.M., Arzola-Ruiz, J., Cordovés-García, A.: Optimización de la distribución de piezas irregulares en chapas. Ingeniería Mecánica 13(2), 1–12 (2010)

    Google Scholar 

  24. Lastres–Aleaga, A.M. Optimización de la distribución y corte de piezas irregulares en chapas. Tesis en opción al grado científico de Doctor en Ciencias Técnicas, Holguín (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Arzola-Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arzola-Ruiz, J., Lastre-Aleaga, A.M., Cordovés, A., Asgher, U. (2020). Using Adaptive Integration of Variables Algorithm for Analysis and Optimization of 2D Irregular Nesting Problem. In: Ayaz, H. (eds) Advances in Neuroergonomics and Cognitive Engineering. AHFE 2019. Advances in Intelligent Systems and Computing, vol 953. Springer, Cham. https://doi.org/10.1007/978-3-030-20473-0_47

Download citation

Publish with us

Policies and ethics