Skip to main content

Multimodal fNIRS-EEG Classification Using Deep Learning Algorithms for Brain-Computer Interfaces Purposes

  • Conference paper
  • First Online:
Advances in Neuroergonomics and Cognitive Engineering (AHFE 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 953))

Included in the following conference series:

Abstract

The development of brain-computer interface (BCI) systems has received considerable attention from neuroscientists in recent years. BCIs can serve as a means of communication and for the restoration of motor function for patients with motor disorders. An essential part of the design of a BCI is correctly classifying the brain signals, historically collected using electroencephalography (EEG). However, recent studies have shown more robust classification results when EEG is combined with other neuroimaging methods such as fNIRS. Conventional classification methods need a priori feature preprocessing to train the model; such feature selection is a difficult and heavily studied problem. By using deep neural networks (DNN), in which recordings can be fed directly to the algorithm for training, we avoid the need for feature selection. In this study, the capabilities of DNNs in the classification of the hybrid EEG-fNIRS recordings of motor imagery (MI) and mental workload (MWL) tasks are investigated. A five-layer fully connected network is used for classification. This study makes use of two open-source meta-datasets collected at the Technische Universitat Berlin. The first dataset includes brain activity recordings of 26 healthy participants during three cognitive tasks: (1) n-back (0-, 2- and 3-back), (2) discrimination/selection response task (DSR) and (3) word generation (WG) tasks. The second dataset, motor imagery, consists of left and right-hand motor imagery tasks, each for 29 healthy participants. Our results show that classification accuracy is considerably higher for multimodal recordings when compared to EEG or fNIRS recordings alone. The proposed algorithm improves classification performance relative to a conventional support vector machine (SVM), reaching 90% average accuracy for both tasks, 8% higher than SVM performance. These results demonstrate the feasibility of achieving strong classification performance using multimodal BCI and deep learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hong, K.-S. Naseer, N., Kim, Y.-H.: Classification of prefrontal and motor cortex signals for three-class fNIRS-BCI. Neurosci. Lett. 587, 87–92 (2015)

    Article  Google Scholar 

  2. Ayaz, H., Dehais, F.: Neuroergonomics: The Brain at Work and Everyday Life, 1st edn. Elsevier, Academic Press, Cambridge (2019)

    Google Scholar 

  3. Ahn, S., Jun, S.C.: Multi-modal integration of EEG-fNIRS for brain-computer interfaces - current limitations and future directions. Front. Hum. Neurosci. 11, 503 (2017). https://doi.org/10.3389/fnhum.2017.00503

  4. Liu, Y., Ayaz, H., Shewokis, P.A.: Mental workload classification with concurrent electroencephalography and functional near-infrared spectroscopy. Brain Comput. Interfaces 4, 1–11 (2017). https://doi.org/10.1080/2326263x.2017.1304020

    Article  Google Scholar 

  5. Dehais, F., Duprès, A., Di Flumeri, G., Verdière, K.J., Borghini, G., Babiloni, F., Roy, R.N.: Monitoring pilot’s cognitive fatigue with engagement features in simulated and actual flight conditions using an hybrid fNIRS-EEG passive BCI. In: IEEE SMC (2018)

    Google Scholar 

  6. Schirrmeister, R.T., Springenberg, J.T., Fiederer, L.D.J., Glasstetter, M., Eggensperger, K., Tangermann, M., Hutter, F., Burgard, W., Ball, T.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38(11), 5391–5420 (2017)

    Article  Google Scholar 

  7. Wang, Z., Lyu, S., Schalk, G., Ji, Q.: Deep feature learning using target priors with applications in ECOG signal decoding for BCI. In: IJCAI, pp. 1785–1791 (2013)

    Google Scholar 

  8. Hajinoroozi, M., Mao, Z., Jung, T.-P., Lin, C.-T., Huang, Y.: EEG-based prediction of driver’s cognitive performance by deep convolutional neural network. Sig. Process. Image Commun. 47, 549–555 (2016)

    Google Scholar 

  9. An, X., Kuang, D., Guo, X., Zhao, Y., He, L.: A deep learning method for classification of EEG data based on motor imagery. In: Huang, D.S., Han, K., Gromiha, M. (eds.) Intelligent Computing in Bioinformatics. Lecture Notes in Computer Science, vol. 8590 (2014)

    Chapter  Google Scholar 

  10. Hong, K.-S., Naseer, N., Kim, Y.-H.: Classification of prefrontal and motor cortex signals for three-class fNIRS-BCI. Neurosci. Lett. 587, 87–92 (2015)

    Article  Google Scholar 

  11. Khan, M.J., Hong, M.J., Hong, K.-S.: Decoding of four movement directions using hybrid NIRS-EEG brain-computer interface. Front. Hum. Neurosci. 8, 244 (2014)

    Google Scholar 

  12. Coyle, S.M., Ward, T.E., Markham, C.M.: Brain computer interface using a simplified functional near-infrared spectroscopy system. J. Neural Eng. 4(3), 219 (2007)

    Article  Google Scholar 

  13. Fazli, S., Mehnert, J., Steinbrink, J., Curio, G., Villringer, A., Muller, K.-R., Blankertz, B.: Enhanced performance by a hybrid NIRS-EEG brain computer interface. Neuroimage 59(1), 519–529 (2012)

    Article  Google Scholar 

  14. Abibullaev, B., An, J., Moon, J.-I.: Neural network classification of brain hemodynamic responses from four mental tasks. Int. J. Optomechatronics 5(4), 340–359 (2011)

    Article  Google Scholar 

  15. Hennrich, J., Her, C., Heger, D., Schultz, T.: Investigating deep learning for fNIRS based BCI. In: EMBC, pp. 2844–2847 (2015)

    Google Scholar 

  16. Nguyen, H.T., Ngo, C.Q., Truong Quang Dang, K., Vo, V.T.: Temporal hemodynamic classification of two hands tapping using functional near-infrared spectroscopy. Front. Hum. Neurosci. 7, 516 (2013)

    Google Scholar 

  17. Trakoolwilaiwan, T., Behboodi, B., Lee, J., Kim, K., Choi, J.-W.: Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-Hand motor execution. Neurophotonics 5 (2007)

    Article  Google Scholar 

  18. Croce, P., Zappasodi, F., Merla, A., Chiarelli, M.: Exploiting neurovascular coupling: a Bayesian sequential Monte Carlo approach applied to simulated EEG fNIRS data. J. Neural Eng. 14(4) (2017)

    Article  Google Scholar 

  19. Chiarelli, A.M., Zappasodi, F., Di Pompeo, F., Merla, A.: Simultaneous functional near-infrared spectroscopy and electroencephalography for monitoring of human brain activity and oxygenation: a review. Neurophotonics 4(4) (2017)

    Article  Google Scholar 

  20. Ma, L., Zhang, L., Wang, L., Xu, M., Qi, H., Wan, B., Ming, D., Hu, Y.: A hybrid brain-computer interface combining the EEG and NIRS. In: 2012 IEEE International Conference Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS), pp. 159–162 (2012)

    Google Scholar 

  21. Lee, M.-H., Fazli, S., Mehnert, J., Lee, S.-W.: Hybrid brain-computer interface based on EEG and NIRS modalities. In: 2014 International Winter Workshop on Brain-Computer Interface (BCI), (2014)

    Google Scholar 

  22. Buccino, A.P., Keles, H.O., Omurtag, A.: Hybrid EEG-fNIRS asynchronous brain computer interface for multiple motor tasks. PloS ONE 11(1) (2016)

    Article  Google Scholar 

  23. Jirayucharoensak, S., Pan-Ngum, S., Israsena, P.: EEG-based emotion recognition using deep learning network with principal component based covariate shift adaptation. Sci. World J. (2014)

    Google Scholar 

  24. Shin, J., Von Luhmann, A., Kim, D.-W., Mehnert, J., Hwang, H.-J., Muller, K.-R.: Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open access dataset. In: Generic Research Data (2018)

    Google Scholar 

  25. Shin, J., Von Lhmann, A., Kim, D.-W., Mehnert, J., Hwang, H.-J., Muller, K.-R.: Simultaneous aquisition of EEG and NIRS during cognitive tasks for an open access dataset. In: Scientific Data, vol. 5 (2018)

    Article  Google Scholar 

  26. Pfurtscheller, G.: Functional brain imaging based on ERD/ERS. Vis. Res. 41(10–11), 1257–1260 (2001)

    Article  Google Scholar 

  27. Pourshafi, A., Saniei, M., Saeedian, A., Saadati, M.: Optimal reactive power compensation in a deregulated distribution network. In: 44th International Universities Power Engineering Conference (UPEC), pp. 1–6 (2009)

    Google Scholar 

  28. Neuper, C., Pfurtscheller, G.: Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int. J. Psychophysiol. 43(1), 41–58 (2001)

    Article  Google Scholar 

  29. Saadati, M., Nelson, J.K.: Multiple transmitter localization using clustering by likelihood of transmitter proximity. In: 51st Asilomar Conference on Signals, Systems, and Computers, pp. 1769–1773 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Saadati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saadati, M., Nelson, J., Ayaz, H. (2020). Multimodal fNIRS-EEG Classification Using Deep Learning Algorithms for Brain-Computer Interfaces Purposes. In: Ayaz, H. (eds) Advances in Neuroergonomics and Cognitive Engineering. AHFE 2019. Advances in Intelligent Systems and Computing, vol 953. Springer, Cham. https://doi.org/10.1007/978-3-030-20473-0_21

Download citation

Publish with us

Policies and ethics