Skip to main content

Task for a Laboratory Measurement of Mass Fraction of TiO2 and Fe-tot in Ilmenite and Titanium Slag

  • Chapter
  • First Online:
Traceability, Validation and Measurement Uncertainty in Chemistry: Vol. 3

Abstract

This procedure describes titrimetric determination of mass fraction of titanium dioxide (TiO2) and total iron content (Fe-tot) in Ilmenite and Titanium Slag.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Readings

  1. ISO 591-1: 2000 Titanium dioxide pigments for paints – Part 1: Specifications and methods of test

    Google Scholar 

  2. J. D. Norris; Analyst, November 1984, Vol. 109: Determination of titanium in titanium dioxide pigments, paints and other materials by chromium(II) chloride reduction and automatic potentiometric titration

    Google Scholar 

  3. ISO 21748: 2010 Guidance for the use of repeatability, reproducibility and trueness estimates in measurement uncertainty estimation

    Google Scholar 

  4. ISO TR 13587: 2012 Three statistical approaches for the assessment and interpretation of measurement uncertainty

    Google Scholar 

  5. ISO 7870-2: 2013 Control charts – Part 2: Shewhart control charts

    Google Scholar 

  6. ISO 2854: 1976 Statistical interpretation of data – Techniques of estimation and tests relating to means and variances

    Google Scholar 

  7. EURACHEM/CITAC Guide CG4: Quantifying Uncertainty in Analytical Measurement, Third Edition, 2012

    Google Scholar 

  8. Eurolab Technical Report No. 1/2002: Measurement Uncertainty in Testing

    Google Scholar 

  9. NORDTEST Report TR 537: Handbook for Calculation of Measurement Uncertainty in Environmental Laboratories, Edition 3.1, 2012

    Google Scholar 

  10. R. Bettencourt da Silva, E. Bulska, B. Godlewska-Żyłkiewicz, M. Hedrich, N. Majcen, B. Magnusson, S. Marinčić, I. Papadakis, M. Patriarca, E. Vassileva, P. Taylor; Analytical measurement: measurement uncertainty and statistics, European Commission, Joint Research Centre, Institute for Reference Materials and Measurements, © European Union, 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jurij Pustinek .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (ZIP 903 kb)

Appendices

Excercise 1: Establishing Traceability in Analytical Chemistry

1.:

Specifying the analyte and measurand

Analyte

TiO2

Fe-tot

Measurand

Mass fraction of TiO2 in Ilmenite

Mass fraction of TiO2 in Titanium Slag

Mass fraction of Fe-tot in Ilmenite

Mass fraction of Fe-tot in Titanium Slag

Units

%

2. :

Choosing a suitable measurement procedure with associated model equation

Measurement procedure

The method is comprised of two parts. In the first the solution of potassium dichromate is standardized by using the certified reference material (CRM Ilmenite or CRM Titanium Slag), and in the second part the mass fraction of TiO2 and Fe-tot is determined in a sample of Ilmenite or Ti-Slag by titration. Determination of the equivalence points is potentiometric using a gold indicator electrode and an Ag/AgCl reference electrode

The sample of Ilmenite or Ti-Slag is dried at 110 °C to constant mass. Dried sample is fused with melted potassium pyrosulfate and the melt is dissolved in hydrochloric acid. By addition of the excess of the solution of chromium(II) chloride Ti4+ is reduced to Ti3+ and Fe3+ is reduced to Fe2+ in the inert atmosphere of carbon dioxide

With potassium dichromate is titrated the firstly exceeded chromium(II) chloride (1st equivalence point), then Ti3+ (2nd equivalence point) and then Fe2+ (3rd equivalence point)

Type of calibration *

standard curve

standard addition

internal standard

  1. *None of the above

Model equation

Mass fraction of TiO2 and Fe-tot is calculated by:

Ilmenite

$$\begin{array}{*{20}l} {\boxed{W_{{TiO_{2} }} = \frac{{(V_{EX1} + V_{EQ2} ) \cdot H_{8} \cdot V_{500} }}{{m_{s} \cdot V_{100} }} \cdot 100}\quad [{\% }]} \hfill & {\boxed{H_{8} = \frac{{m_{CRM} \cdot W_{{TiO_{2} }}^{CRM} \cdot V_{100} }}{{(V_{EX1} + V_{EQ2} ) \cdot V_{500} \cdot 100}}}\;[{\text{g}} \,{\text{mL}^{-1}}]\left( {{\text{g}}\,{\text{TiO}}_{2}\,{\text{mL}}\,{\text{K}}_{2} {\text{Cr}}_{2} {\text{O}}_{7} } \right)} \hfill \\ {\boxed{W_{{Fe{\text{-}}tot}} = \frac{{(V_{EX2} + V_{EQ3} ) \cdot H_{9} \cdot V_{500} }}{{m_{s} \cdot V_{100} }} \cdot 100}\quad [{\% }]} \hfill & {\boxed{H_{9} = \frac{{m_{CRM} \cdot W_{{Fe{\text{-}}tot}}^{CRM} \cdot V_{100} }}{{(V_{EX2} + V_{EQ3} ) \cdot V_{500} \cdot 100}}}\;[\text{g mL}^{ - 1}]\left( {{\text{g}}\,{\text{Fe}} \,{\text{mL}^{-1}}\,{\text{K}}_{2} {\text{Cr}}_{2} {\text{O}}_{7} } \right)} \hfill \\ \end{array}$$

Ti-Slag

$$\begin{array}{*{20}l} {\boxed{W_{{TiO_{2} }} = \frac{{(V_{EX1} + V_{EQ2} ) \cdot H_{11} \cdot V_{500} }}{{m_{s} \cdot V_{100} }} \cdot 100}\quad [{\% }]} \hfill & {\boxed{H_{11} = \frac{{m_{CRM} \cdot W_{{TiO_{2} }}^{CRM} \cdot V_{100} }}{{(V_{EX1} + V_{EQ2} ) \cdot V_{500} \cdot 100}}}\;[\text{g mL}^{ - 1}]({\text{g}}\,{\text{TiO}}_{2} {\text{mL}^{-1}}\,{\text{K}}_{2} {\text{Cr}}_{2} {\text{O}}_{7} )} \hfill \\ {\boxed{W_{{Fe{\text{-}}tot}} = \frac{{(V_{EX2} + V_{EQ3} ) \cdot H_{12} \cdot V_{500} }}{{m_{s} \cdot V_{100} }} \cdot 100}\quad [{\% }]} \hfill & {\boxed{H_{12} = \frac{{m_{CRM} \cdot W_{{Fe{\text{-}}tot}}^{CRM} \cdot V_{100} }}{{(V_{EX2} + V_{EQ3} ) \cdot V_{500} \cdot 100}}}\;[\text{g mL}^{ - 1}]\left( {{\text{g}}\,{\text{Fe}}\,{\text{mL}}\,{\text{K}}_{2} {\text{Cr}}_{2} {\text{O}}_{7} } \right)} \hfill \\ \end{array}$$
\(V_{EX1}\) :

excess volume of K2Cr2O7 1st titration [mL]

\(V_{EX2}\) :

excess volume of K2Cr2O7 2nd titration [mL]

\(V_{EQ2}\) :

volume of K2Cr2O7 used for Ti3+ titration (2nd titration) [mL]

\(V_{EQ3}\) :

volume of K2Cr2O7 used for Fe2+ titration (3rd titration) [mL]

\(V_{500}\) :

volume of dissolved sample or CRM (500 mL flask) [mL]

\(V_{100}\) :

volume of sample aliquot or CRM aliquot (100 mL pipette) [mL]

\(m\) :

mass of sample or CRM [g]

\(W\) :

mass fraction [%]

\(H\) :

standardization parameter [g mL−1].

3. :

List the input quantities according to their influence on the uncertainty of the result of the measurement (first the most important ones). At this point, your judgement should be based on your previous experience only

1

Standardization of K2Cr2O7 with CRM Ilmenite or CRM Titanium Slag – \(H\)

2

Volume of K2Cr2O7 used for titration – \(V_{EQ}\)

3

Repeatability – \(P\)

4

Volume of dissolved sample – \(V_{500}\)

5

Volume of sample aliquot – \(V_{100}\)

4.:

List the reference standards needed and state the information regarding traceability of the reference value

For the analyte

1

Name/Chemical Formula/Producer:

Ilmenite SARM 59/Mintek

2

Name/Chemical Formula/Producer:

Titanium Slag SARM 58/Mintek

For the other input quantities

1

Quantity/Equipment/Calibration:

e.g. mass/balance/calibrated by NMI, U = xx (k = 2), see also data yellow sheet

Analytical and precise balance – calibrated by NMI

2

Quantity/Equipment/calibration:

Automatic titrator Mettler DL70ES with gold indicator electrode and Ag/AgCl reference electrode – calibrated by producer

3

Quantity/Equipment/calibration:

Burettes Mettler – calibrated by producer

4

Quantity/Equipment/calibration:

Volumetric flask – class A quality

5

Quantity/Equipment/calibration:

Volumetric pipette – class A quality

5. :

Estimating uncertainty associated with the measurement

Are all important parameters included in the model equation?

Yes

No

Other important parameters are:

Within-lab repeatability or reproducibility

6. :

How would you prove traceability of your result?

1

Analysis of matrix CRM

2

Participation in a proficiency testing scheme

7. :

Any other comments, questions…

.

.

Exercise 2: Single Laboratory Validation of Measurement Procedures

2.1 Part I: General Issues

1. :

Specify the measurement procedure, analyte, measurand and units

The measurement procedure

Titrimetric determination of mass fraction of titanium dioxide (TiO2) and total iron content (Fe-tot) in Ilmenite and Titanium Slag

Analyte

TiO2

Fe-tot

The measurand

Mass fraction of TiO2 in Ilmenite

Mass fraction of TiO2 in Titanium Slag

Mass fraction of Fe-tot in Ilmenite

Mass fraction of Fe-tot in Titanium Slag

Unit

%

2. :

Specify the Scope

Matrix

Ilmenite and Titanium Slag

Measuring range

Analyte

Ilmenite

Titanium Slag

TiO2

from 30 to 60%

from 60 to 90%

Fe-tot

from 20 to 40%

from 5 to 20%

3. :

Requirement on the measurement procedure

Intended use of the results

Quality control of Ilmenite and Titanium Slag (raw materials)

Mark the customer’s requirements and give their values

Parameters to be validated

Value requested by the customer

LOD

 

LOQ

 

Repeatability

 

Within-lab reproducibility

 

Trueness

 

Measurement uncertainty

TiO2: Urel < 1%

Fe-tot: Urel < 5%

Other-state

 
4. :

Origin of the Measurement Procedure

  

VALIDATION

New In-House Method

Full

Modified Validated Method

Partial

Official Standard Method

Confirmation/Verification

2.2 Part II: Parameters to Be Validated

5. :

Selectivity/Interference/Recovery

Where yes, please give further information e.g. which CRM, reference method

CRM/RM: analysis of available CRM or RM

Further information: CRM SARM 59 – Ilmenite, CRM SARM 57 – Titanium Slag

Spike of pure substance

Compare with a reference method

Selectivity, interferences

Test with different matrices

Otherplease specify

Participation in the inter laboratory comparison organized by the Quality Control Department of Cinkarna Celje, “Measurements of various parameters in some TiO2 based materials, March 2011”

6. :

Measuring range

Linearity

Upper limit

LOD

LOQ

7. :

Spread – Precision

Repeatability

Reproducibility (within Lab)

Reproducibility (between Lab)

8. :

Robustness

Variation of parameters

9. :

Quality Control

Control charts

Participation in PT schemes

10. :

Other parameters to be tested

Working range and testing of homogeneity of variances

R square

Residual standard deviation

Standard deviation of the analytical procedure

Coefficient of variation of the analytical procedure

Measurement uncertainty

2.3 Part III: Some Calculations and Conclusions

11. :

Calculation of parameters requested by the customer

Parameters requested to be validated

Calculations

LOD

 

LOQ

 

Repeatability

 

Within-lab reproducibility

 

Trueness

 

Measurement uncertainty

 

Other-please state

 
12. :

Does the analytical procedure fulfil the requirement(s) for the intended use?

Parameter

Value requested by the customer (the same as stated in question 3)

Value obtained during validation

The requirement is fulfilled

Yes/No

LOD

   

LOQ

   

Repeatability

   

Within-lab reproducibility

   

Trueness

   

Measurement uncertainty

TiO2: Urel < 1%

Fe-tot: Urel < 5%

Ilmenite:

TiO2: Urel = 0.74%

Fe-tot: Urel = 1.2%

Ti-Slag:

TiO2: Urel = 0.54%

Fe-tot: Urel = 2.9%

Yes

Other

   

The analytical procedure is fit for the intended use:

Yes          No

For Measurement Uncertainty and Traceability refer to the corresponding sheets

Building An Uncertainty Budget

1. :

Specify the measurand and units

Measurand

Mass fraction of TiO2 in Ilmenite

Mass fraction of TiO2 in Titanium Slag

Mass fraction of Fe-tot in Ilmenite

Mass fraction of Fe-tot in Titanium Slag

Unit

%

2. :

Describe the measurement procedure and provide the associated model equation

Measurement procedure:

The method is comprised of two parts. In the first the solution of potassium dichromate is standardized by using the certified reference material (CRM Ilmenite or CRM Titanium Slag), and in the second part the mass fraction of TiO2 and Fe-tot is determined in a sample of Ilmenite or Ti-Slag by titration. Determination of the equivalence points is potentiometric using a gold indicator electrode and an Ag/AgCl reference electrode.

The sample of Ilmenite or Ti-Slag is dried at 110 °C to constant mass. Dried sample is fused with melted potassium pyrosulfate and the melt is dissolved in hydrochloric acid. By addition of the excess of the solution of chromium(II) chloride Ti4+ is reduced to Ti3+ and Fe3+ is reduced to Fe2+ in the inert atmosphere of carbon dioxide.

With potassium dichromate is titrated the firstly exceeded chromium(II) chloride (1st equivalence point), then Ti3+ (2nd equivalence point) and then Fe2+ (3rd equivalence point).

Model equation:

Mass fraction of TiO2 and Fe-tot is calculated by:

Ilmenite

$$\begin{array}{*{20}l} {\boxed{W_{{TiO_{2} }} = \frac{{(V_{EX1} + V_{EQ2} ) \cdot H_{8} \cdot V_{500} }}{{m_{s} \cdot V_{100} }} \cdot 100}\quad [{\% }]} \hfill & {\boxed{H_{8} = \frac{{m_{CRM} \cdot W_{{TiO_{2} }}^{CRM} \cdot V_{100} }}{{(V_{EX1} + V_{EQ2} ) \cdot V_{500} \cdot 100}}}\;[{\text{g}}\,{\text{mL}}^{ - 1} ]\left( {{\text{g}}\,{\text{TiO}}_{2} \,{\text{mL}}^{ - 1} \,{\text{K}}_{2} {\text{Cr}}_{2} {\text{O}}_{7} } \right)} \hfill \\ {\boxed{W_{{Fe{\text{-}}tot}} = \frac{{(V_{EX2} + V_{EQ3} ) \cdot H_{9} \cdot V_{500} }}{{m_{s} \cdot V_{100} }} \cdot 100}\quad [{\% }]} \hfill & {\boxed{H_{9} = \frac{{m_{CRM} \cdot W_{Fe\text{-}tot}^{CRM} \cdot V_{100} }}{{(V_{EX2} + V_{EQ3} ) \cdot V_{500} \cdot 100}}}\;[{\text{g}}\,{\text{mL}}^{ - 1} ]\left( {{\text{g}}\,{\text{Fe}}\,{\text{mL}}^{ - 1} \,{\text{K}}_{2} {\text{Cr}}_{2} {\text{O}}_{7} } \right)} \hfill \\ \end{array}$$

Ti-Slag

$$\begin{array}{*{20}l} {\boxed{W_{{TiO_{2} }} = \frac{{(V_{EX1} + V_{EQ2} ) \cdot H_{11} \cdot V_{500} }}{{m_{s} \cdot V_{100} }} \cdot 100}\quad [{\% }]} \hfill & {\boxed{H_{11} = \frac{{m_{CRM} \cdot W_{{TiO_{2} }}^{CRM} \cdot V_{100} }}{{(V_{EX1} + V_{EQ2} ) \cdot V_{500} \cdot 100}}}\;[{\text{g}}\,{\text{mL}}^{ - 1} ]({\text{g}}\,{\text{TiO}}_{2} \,{\text{mL}}^{ - 1} \,\,{\text{K}}_{2} {\text{Cr}}_{2} {\text{O}}_{7} )} \hfill \\ {\boxed{W_{{Fe{\text{-}}tot}} = \frac{{(V_{EX2} + V_{EQ3} ) \cdot H_{12} \cdot V_{500} }}{{m_{s} \cdot V_{100} }} \cdot 100}\quad [{\% }]} \hfill & {\boxed{H_{12} = \frac{{m_{CRM} \cdot W_{Fe\text{-}tot}^{CRM} \cdot V_{100} }}{{(V_{EX2} + V_{EQ3} ) \cdot V_{500} \cdot 100}}}\;[{\text{g}}\,{\text{mL}}^{ - 1} ]\left( {{\text{g}}\,{\text{Fe}}\,{\text{mL}}^{ - 1} \,\,{\text{K}}_{2} {\text{Cr}}_{2} {\text{O}}_{7} } \right)} \hfill \\ \end{array}$$
\(V_{EX1}\) :

excess volume of K2Cr2O7 1st titration [mL]

\(V_{EX2}\) :

excess volume of K2Cr2O7 2nd titration [mL]

\(V_{EQ2}\) :

volume of K2Cr2O7 used for Ti3+ titration (2nd titration) [mL]

\(V_{EQ3}\) :

volume of K2Cr2O7 used for Fe2+ titration (3rd titration) [mL]

\(V_{500}\) :

volume of dissolved sample or CRM (500 mL flask) [mL]

\(V_{100}\) :

volume of sample aliquot or CRM aliquot (100 mL pipette) [mL]

\(m\) :

mass of sample or CRM [g]

\(W\) :

mass fraction [%]

\(H\) :

standardization parameter [g/mL]

3. :

Identify (all possible) sources of uncertainty

Repeatability

Volume of sample aliquot

Volume of dissolved sample

Mass of sample

Standardization of K2Cr2O7 with CRM

Volume of K2Cr2O7 used for titration

4. :

Evaluate values of each input quantity

Determination of mass fraction of TiO 2 in Ilmenite [%]

Input quantity

Value

Unit

Remark

\(V_{100}\)

100

mL

Volume of sample aliquot

\(V_{500}\)

500

mL

Volume of dissolved sample

\(m_{s}\)

0.5101

g

Mass of sample

\(H_{8}\)

0.009585

g mL−1

Standardization of K2Cr2O7 with CRM Ilmenite

\(V_{EX1} + V_{EQ2}\)

5.7155

mL

Volume of K2Cr2O7 used for titration

Determination of mass fraction of Fe-tot in Ilmenite [%]

Input quantity

Value

Unit

Remark

\(V_{100}\)

100

mL

Volume of sample aliquot

\(V_{500}\)

500

mL

Volume of dissolved sample

\(m_{s}\)

0.5101

g

Mass of sample

\(H_{9}\)

0.006835

g mL−1

Standardization of K2Cr2O7 with CRM Ilmenite

\(V_{EX2} + V_{EQ3}\)

4.5732

mL

Volume of K2Cr2O7 used for titration

Determination of mass fraction of TiO 2 in Titanium Slag [%]

Input quantity

Value

Unit

Remark

\(V_{100}\)

100

mL

Volume of sample aliquot

\(V_{500}\)

500

mL

Volume of dissolved sample

\(m_{s}\)

0.5050

g

Mass of sample

\(H_{11}\)

0.004862

g mL−1

Standardization of K2Cr2O7 with CRM Titanium Slag

\(V_{EX1} + V_{EQ2}\)

16.2883

mL

Volume of K2Cr2O7 used for titration

Determination of mass fraction of Fe-tot in Titanium Slag [%]

Input quantity

Value

Unit

Remark

\(V_{100}\)

100

mL

Volume of sample aliquot

\(V_{500}\)

500

mL

Volume of dissolved sample

\(m_{s}\)

0.5050

g

Mass of sample

\(H_{12}\)

0.003480

g mL−1

Standardization of K2Cr2O7 with CRM Titanium Slag

\(V_{EX2} + V_{EQ3}\)

1.8276

mL

Volume of K2Cr2O7 used for titration

5. :

Evaluate the standard uncertainty of each contribution

Determination of mass fraction of TiO 2 in Ilmenite [%]

Input quantity

Standard uncertainty

Unit

Remark

P

0.068

%

Repeatability

\(V_{100}\)

0.0489

mL

Volume of sample aliquot

\(V_{500}\)

0.2086

mL

Volume of dissolved sample

\(m_{s}\)

0.00015

g

Mass of sample

\(H_{8}\)

0.0000298

g mL−1

Standardization of K2Cr2O7 with CRM Ilmenite

\(V_{EX1} + V_{EQ2}\)

0.00836

mL

Volume of K2Cr2O7 used for titration

Determination of mass fraction of Fe-tot in Ilmenite [%]

Input quantity

Standard uncertainty

Unit

Remark

P

0.064

%

Repeatability

\(V_{100}\)

0.0489

mL

Volume of sample aliquot

\(V_{500}\)

0.2086

mL

Volume of dissolved sample

\(m_{s}\)

0.00015

g

Mass of sample

\(H_{9}\)

0.0000360

g mL−1

Standardization of K2Cr2O7 with CRM Ilmenite

\(V_{EX2} + V_{EQ3}\)

0.00836

mL

Volume of K2Cr2O7 used for titration

Determination of mass fraction of TiO 2 in Titanium Slag [%]

Input quantity

Standard uncertainty

Unit

Remark

\(P\)

0.066

%

Repeatability

\(V_{100}\)

0.0489

mL

Volume of sample aliquot

\(V_{500}\)

0.2086

mL

Volume of dissolved sample

\(m_{s}\)

0.00015

g

Mass of sample

\(H_{11}\)

0.0000105

g mL−1

Standardization of K2Cr2O7 with CRM Titanium Slag

\(V_{EX1} + V_{EQ2}\)

0.0174

mL

Volume of K2Cr2O7 used for titration

Determination of mass fraction of Fe-tot in Titanium Slag [%]

Input quantity

Standard uncertainty

Unit

Remark

P

0.030

%

Repeatability

\(V_{100}\)

0.0489

mL

Volume of sample aliquot

\(V_{500}\)

0.2086

mL

Volume of dissolved sample

\(m_{s}\)

0.00015

g

Mass of sample

\(H_{12}\)

0.0000344

g mL−1

Standardization of K2Cr2O7 with CRM Titanium Slag

\(V_{EX2} + V_{EQ3}\)

0.0163

mL

Volume of K2Cr2O7 used for titration

6.:

Calculate the value of the measurand, using the model equation

Ilmenite – TiO 2

$$W_{{TiO_{2} }} = \frac{{(V_{EX1} + V_{EQ2} ) \cdot H_{8} \cdot V_{500} }}{{m_{s} \cdot V_{100} }} \cdot 100 = \frac{{(0.1483\;\text{mL} + 5.5672\;\text{mL}) \cdot 0.009585\,\text{g mL}^{ - 1} \cdot 500\;\text{mL} \cdot 100}}{{0.5101\,{\text{g}} \cdot 100\;\text{mL}}} = 53.70{\% }$$

Ilmenite – Fe-tot

$$W_{{Fe{\text{-}}tot}} = \frac{{(V_{EX2} + V_{EQ3} ) \cdot H_{9} \cdot V_{500} }}{{m_{s} \cdot V_{100} }} \cdot 100 = \frac{{(0.1008\;\text{mL} + 4.4724\;\text{mL}) \cdot 0.006835\,\text{g mL}^{ - 1} \cdot 500\;\text{mL} \cdot 100}}{{0.5101\,\text{g} \cdot 100\;\text{mL}}} = 30.64{\% }$$

Titanium Slag – TiO 2

$$W_{{TiO_{2} }} = \frac{{(V_{EX1} + V_{EQ2} ) \cdot H_{11} \cdot V_{500} }}{{m_{s} \cdot V_{100} }} \cdot 100 = \frac{{(0.1407\,\text{mL} + 16.1476\,\text{mL}) \cdot 0.004862\,\text{g mL}^{ - 1} \cdot 500\,\text{mL} \cdot 100}}{{0.5050\,\text{g} \cdot 100\,\text{mL}}} = 78.41{\% }$$

Titanium Slag – Fe-tot

$$W_{{Fe{\text{-}}tot}} = \frac{{(V_{EX2} + V_{EQ3} ) \cdot H_{12} \cdot V_{500} }}{{m_{s} \cdot V_{100} }} \cdot 100 = \frac{{(0.1184\,\text{mL} + 1.7092\,\text{mL}) \cdot 0.003480\,\text{g mL}^{ - 1} \cdot 500\,\text{mL} \cdot 100}}{{0.5050\,\text{g} \cdot 100\,\text{mL}}} = 6.30{\% }$$
7.:

Calculate the combined standard uncertainty (u c ) of the result & specify units

Using: Mathematical solution; Spreadsheet Approach; Commercial Software

Ilmenite

 

TiO 2

Fe-tot

 

Unit

Value

u

\(u_{rel}\)

Value

u

\(u_{rel}\)

P

%

0.068

0.00127

0.064

0.00209

\(V_{100}\)

mL

100

0.0489

0.00049

100

0.0489

0.00049

\(V_{500}\)

mL

500

0.2086

0.00042

500

0.2086

0.00042

\(m_{s}\)

g

0.5101

0.00015

0.00029

0.5101

0.00015

0.00029

H

g/mL

0.009585

0.0000298

0.00311

0.006835

0.0000360

0.00527

\(V_{EX} + V_{EQ}\)

mL

5.7155

0.00836

0.00146

4.5732

0.00836

0.00183

W

%

53.70

0.200

0.00373

30.64

0.184

0.00600

Titanium slag

 

TiO 2

Fe-tot

 

Unit

Value

u

\(u_{rel}\)

Value

u

\(u_{rel}\)

P

%

0.066

0.00084

0.030

0.00476

\(V_{100}\)

mL

100

0.0489

0.00049

100

0.0489

0.00049

\(V_{500}\)

mL

500

0.2086

0.00042

500

0.2086

0.00042

\(m_{s}\)

g

0.5050

0.00015

0.00030

0.5050

0.00015

0.00030

H

g/mL

0.004862

0.0000105

0.00216

0.003480

0.0000344

0.00989

\(V_{EX} + V_{EQ}\)

mL

16.2883

0.0174

0.00107

1.8276

0.0163

0.00892

W

%

78.41

0.208

0.00265

6.30

0.089

0.0142

8. :

Calculate expanded uncertainty (U c ) & specify the coverage factor k and the units

k = 2

ILMENITE

TITANIUM SLAG

TiO2

Fe-tot

TiO2

Fe-tot

U *

%

0.40

0.37

0.42

0.18

  1. *U is expanded uncertainty calculated using a coverage factor of 2, which gives a level of confidence of approximately 95%
9. :

Analyse the uncertainty contribution & specify the main three input quantities contributing the most to U c

1

Standardization of K2Cr2O7 with CRM Ilmenite or CRM Titanium Slag – H

2

Volume of K2Cr2O7 used for titration – \(V_{EQ}\)

3

Repeatability – P

10. :

Prepare your Uncertainty Budget Report

Ilmenite:

  • (53.7 ± 0.40) % TiO2 (k = 2)*

  • (30.6 ± 0.37) % Fe-tot (k = 2)*

Titanium Slag:

  • (78.4 ± 0.42) % TiO2 (k = 2)*

  • (6.3 ± 0.18) % Fe-tot (k = 2)*

*The reported uncertainty is expanded uncertainty calculated using a coverage factor of k = 2, which gives a level of confidence of approximately 95%.

Addendum I. Measurement Uncertainty Calculation

 

ILMENITE

TITANIUM SLAG

TiO 2

Fe-tot

TiO 2

Fe-tot

Value

u

u rel

Value

u

u rel

Value

u

u rel

Value

u

u rel

P [%]

0.068

0.00127

0.064

0.00209

0.066

0.00084

0.030

0.00476

V 100 [mL]

100

0.0489

0.00049

100

0.0489

0.00049

100

0.0489

0.00049

100

0.0489

0.00049

V 500 [mL]

500

0.2086

0.00042

500

0.2086

0.00042

500

0.2086

0.00042

500

0.2086

0.00042

m s [g]

0.5101

0.00015

0.00029

0.5101

0.00015

0.00029

0.5050

0.00015

0.00030

0.5050

0.00015

0.00030

H [g/mL]

0.009585

0.0000298

0.00311

0.006835

0.0000360

0.00527

0.004862

0.0000105

0.00216

0.003480

0.0000344

0.00989

V EX  + V EQ [mL]

5.7155

0.00836

0.00146

4.5732

0.00836

0.00183

16.2883

0.0174

0.00107

1.8276

0.0163

0.00892

W [%]

53.70

0.20

0.00373

30.64

0.18

0.00600

78.41

0.21

0.00265

6.30

0.089

0.0142

U

 

0.40

  

0.37

  

0.42

  

0.18

 
   

ri [%]

  

ri [%]

  

ri [%]

  

ri [%]

P

  

11.53

  

12.14

  

10.10

  

11.32

V (100)

  

1.72

  

0.67

  

3.41

  

0.12

V (500)

  

1.25

  

0.48

  

2.48

  

0.09

m (s)

  

0.62

  

0.24

  

1.26

  

0.04

H

  

69.50

  

77.18

  

66.48

  

48.75

V (EX) + V (EQ)

  

15.38

  

9.30

  

16.27

  

39.68

W

  

100.00

  

100.00

  

100.00

  

100.00

figure bk
 

H8

H9

H11

H12

Value

u

u rel

Value

u

u rel

Value

u

u rel

Value

u

u rel

V 100 [mL]

100

0.0489

0.00049

100

0.0489

0.00049

100

0.0489

0.00049

100

0.0489

0.00049

V 500 [mL]

500

0.2086

0.00042

500

0.2086

0.00042

500

0.2086

0.00042

500

0.2086

0.00042

m CRM [g]

0.5088

0.00015

0.00029

0.5088

0.00015

0.00029

0.5054

0.00015

0.00030

0.5054

0.00015

0.00030

V EX  + V EQ [mL]

5.1810

0.00836

0.00161

5.2405

0.00836

0.00160

17.4827

0.0174

0.00100

1.9490

0.0163

0.00836

W CRM [%]

48.8

0.125

0.00256

35.2

0.175

0.00497

84.1

0.150

0.00178

6.71

0.035

0.00522

H [g/mL]

0.009585

0.0000298

0.00311

0.006835

0.0000360

0.00527

0.004862

0.0000105

0.00216

0.003480

0.0000344

0.00988

   

ri [%]

  

ri [%]

  

ri [%]

  

ri [%]

V (100)

  

2.47

  

0.86

  

5.12

  

0.24

V (500)

  

1.80

  

0.63

  

3.72

  

0.18

m (CRM)

  

0.90

  

0.31

  

1.89

  

0.09

V (EX) + V (EQ)

  

26.94

  

9.17

  

21.20

  

71.63

W (CRM)

  

67.89

  

89.03

  

68.08

  

27.86

H

  

100.00

  

100.00

  

100.00

  

100.00

figure bl

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pustinek, J., Kanduč, K.R., Hrastelj, N. (2019). Task for a Laboratory Measurement of Mass Fraction of TiO2 and Fe-tot in Ilmenite and Titanium Slag. In: Hrastelj, N., Bettencourt da Silva, R. (eds) Traceability, Validation and Measurement Uncertainty in Chemistry: Vol. 3. Springer, Cham. https://doi.org/10.1007/978-3-030-20347-4_5

Download citation

Publish with us

Policies and ethics