Skip to main content

Therapeutic Options for Metastatic Breast Cancer

  • Chapter
  • First Online:
Book cover Breast Cancer Metastasis and Drug Resistance

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1152))

Abstract

Metastatic breast cancer is the most common cancer in women after skin cancer, with a 5-year survival rate of 26%. Due to its high prevalence, it is important to develop therapies that go beyond those that just provide palliation of symptoms. Currently, there are several types of therapies available to help treat breast cancer including: hormone therapy, immunotherapy, and chemotherapy, with each one depending on both the location of metastases and morphological characteristics. Although technological and scientific advancements continue to pave the way for improved therapies that adopt a targeted and personalized approach, the fact remains that the outcomes of current first-line therapies have not significantly improved over the last decade. In this chapter, we review the current understanding of the pathology of metastatic breast cancer before thoroughly discussing local and systemic therapies that are administered to patients diagnosed with metastatic breast cancer. In addition, our review will also elaborate on the genetic profile that is characteristic of breast cancer as well as the local tumor microenvironment that shapes and promotes tumor growth and cancer progression. Lastly, we will present promising novel therapies being developed for the treatment of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Palbociclib is a selective inhibitor applied to HER2-negative and ER-positive metastatic breast cancer patients. It was recently approved to be administered as a treatment option when given alongside aromatase inhibitors, such as letrozole, and has shown to be efficacious, particularly for patients who had previously received endocrine therapy [68, 69].

References

  1. Canadian Cancer Society’s Advisory Committee on Cancer Statistics (2017)

    Google Scholar 

  2. Cheng YC, Ueno NT (2012) Improvement of survival and prospect of cure in patients with metastatic breast cancer. Breast Cancer 19(3):191–199

    Article  PubMed  Google Scholar 

  3. Chaffer CL, Weinberg RA (2011) A perspective on cancer cell metastasis. Science 331(6024):1559

    Article  CAS  PubMed  Google Scholar 

  4. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA (2008) Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68(10):3645

    Article  CAS  PubMed  Google Scholar 

  5. Taube JH, Herschkowitz JI, Komurov K et al (2010) Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci 107(35):15449–15454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Patel LR, Camacho DF, Shiozawa Y, Pienta KJ, Taichman RS (2011) Mechanisms of cancer cell metastasis to the bone: a multistep process. Future Oncol 7(11):1285–1297

    Article  CAS  PubMed  Google Scholar 

  7. Stoletov K, Kato H, Zardouzian E et al (2010) Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci 123(13):2332–2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    Article  CAS  PubMed  Google Scholar 

  9. Yang J, Weinberg RA (2008) Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14(6):818–829

    Article  CAS  PubMed  Google Scholar 

  10. Langley RR, Fidler IJ (2011) The seed and soil hypothesis revisited—the role of tumor-stroma interactions in metastasis to different organs. Int J Cancer 128(11):2527–2535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roskelley CD, Bissell MJ (2002) The dominance of the microenvironment in breast and ovarian cancer. Semin Cancer Biol 12(2):97–104

    Article  PubMed  PubMed Central  Google Scholar 

  12. Luga V, Zhang L, Viloria-Petit Alicia M et al (2012) Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151(7):1542–1556

    Article  CAS  PubMed  Google Scholar 

  13. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20(9):1487–1495

    Article  CAS  PubMed  Google Scholar 

  14. Kahlert C, Kalluri R (2013) Exosomes in tumor microenvironment influence cancer progression and metastasis. J Mol Med 91(4):431–437

    Article  CAS  PubMed  Google Scholar 

  15. Pagani O, Senkus E, Wood W et al (2010) International guidelines for management of metastatic breast cancer: can metastatic breast cancer be cured? JNCI J Natl Cancer Inst 102(7):456–463

    Article  PubMed  Google Scholar 

  16. Vlastos G, Smith DL, Singletary SE et al (2004) Long-term survival after an aggressive surgical approach in patients with breast cancer hepatic metastases. Ann Surg Oncol 11(9):869–874

    Article  PubMed  Google Scholar 

  17. Pocard M, Pouillart P, Asselain B, Salmon RJ (2000) Hepatic resection in metastatic breast cancer: results and prognostic factors. Eur J Surg Oncol (EJSO) 26(2):155–159

    Article  CAS  Google Scholar 

  18. Jetske Ruiterkamp ACV, Bosscha K, Vivianne CG, Tjan-Heijnen MFE (2009) Impact of breast surgery on survival in patients with distant metastases at initial presentation: a systematic review of the literature. Breast Cancer Res Treat 120(1):9–16

    Article  PubMed  Google Scholar 

  19. Rapiti E, Verkooijen HM, Vlastos G et al (2006) Complete excision of primary breast tumor improves survival of patients with metastatic breast cancer at diagnosis. J Clin Oncol 24(18):2743–2749

    Article  PubMed  Google Scholar 

  20. Gnerlich J, Jeffe DB, Deshpande AD, Beers C, Zander C, Margenthaler JA (2007) Surgical removal of the primary tumor increases overall survival in patients with metastatic breast cancer: analysis of the 1988–2003 SEER data. Ann Surg Oncol 14(8):2187–2194

    Article  PubMed  Google Scholar 

  21. Fields RC, Jeffe DB, Trinkaus K et al (2007) Surgical resection of the primary tumor is associated with increased long-term survival in patients with stage IV breast cancer after controlling for site of metastasis. Ann Surg Oncol 14(12):3345–3351

    Article  PubMed  Google Scholar 

  22. Badwe R, Parmar B (2013) Surgical removal of primary breast tumor and axillary lymph nodes at first presentation in women with metastatic breast cancer; a prospective randomized controlled trial. Breast Cancer Symposium. San Antonio

    Google Scholar 

  23. Morrow M, Burstein H, Harris JR (2015) Malignant tumors of the breast. In: Cancer: principles and practice of oncology, 10th edn. Philadelphia, Pa, Lippincott Williams & Wilkins

    Google Scholar 

  24. Smith GL, Xu Y, Buchholz TA et al (2012) Association between treatment with brachytherapy vs whole-breast irradiation and subsequent mastectomy, complications, and survival among older women with invasive breast cancer. JAMA 307(17):1827–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dawood S, Gonzalez-Angulo AM (2013) Progress in the biological understanding and management of breast cancer-associated central nervous system metastases. Oncologist 18(6):675–684

    Article  PubMed  PubMed Central  Google Scholar 

  26. Dellas K (2011) Does radiotherapy have curative potential in metastatic patients? The concept of local therapy in oligometastatic breast cancer. Breast Care 6(5):363–368

    Article  PubMed  PubMed Central  Google Scholar 

  27. Paridaens R, Dirix L, Lohrisch C et al (2003) Mature results of a randomized phase II multicenter study of exemestane versus tamoxifen as first-line hormone therapy for postmenopausal women with metastatic breast cancer. Ann Oncol 14(9):1391–1398

    Article  CAS  PubMed  Google Scholar 

  28. Mayer EL, Burstein HJ (2007) Chemotherapy for metastatic breast cancer. Hematol Oncol Clin N Am 21(2):257–272

    Article  Google Scholar 

  29. Del Mastro L, Catzeddu T, Boni L et al (2006) Prevention of chemotherapy-induced menopause by temporary ovarian suppression with goserelin in young, early breast cancer patients. Ann Oncol 17(1):74–78

    Article  PubMed  Google Scholar 

  30. Geisler J, Haynes B, Anker G, Dowsett M, Lønning PE (2002) Influence of letrozole and anastrozole on total body aromatization and plasma estrogen levels in postmenopausal breast cancer patients evaluated in a randomized, cross-over study. J Clin Oncol 20(3):751–757

    Article  CAS  PubMed  Google Scholar 

  31. Buzdar A (2000) Exemestane in advanced breast cancer. Anti-Cancer Drugs 11(8):609–616

    Article  CAS  PubMed  Google Scholar 

  32. Bertelli G, Garrone O, Merlano M et al (2005) Sequential treatment with exemestane and non-steroidal aromatase inhibitors in advanced breast cancer. Oncology 69(6):471–477

    Article  PubMed  CAS  Google Scholar 

  33. Peng J, Sengupta S, Jordan VC (2009) Potential of selective estrogen receptor modulators as treatments and preventives of breast cancer. Anti-Cancer Agents Med Chem 9(5):481–499

    Article  CAS  Google Scholar 

  34. Howell SJ, Johnston SRD, Howell A (2004) The use of selective estrogen receptor modulators and selective estrogen receptor down-regulators in breast cancer. Best Pract Res Clin Endocrinol Metab 18(1):47–66

    Article  CAS  PubMed  Google Scholar 

  35. Francis PA, Regan MM, Fleming GF et al (2014) Adjuvant ovarian suppression in premenopausal breast cancer. N Engl J Med 372(5):436–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mathew A, Davidson NE (2015) Adjuvant endocrine therapy for premenopausal women with hormone-responsive breast cancer. Breast 24:S120–S125

    Article  PubMed  Google Scholar 

  37. Hortobagyi GN (1998) Treatment of breast cancer. N Engl J Med 339(14):974–984

    Article  CAS  PubMed  Google Scholar 

  38. Zeichner SB, Terawaki H, Gogineni K (2016) A review of systemic treatment in metastatic triple-negative breast cancer. Breast Cancer Basic Clin Res 10:25–36

    Article  CAS  Google Scholar 

  39. O’Shaughnessy J (2005) Extending survival with chemotherapy in metastatic breast cancer. Oncologist 10(3):20–29

    Article  PubMed  Google Scholar 

  40. Crozier JA, Swaika A, Moreno-Aspitia A (2014) Adjuvant chemotherapy in breast cancer: to use or not to use, the anthracyclines. World J Clin Oncol 5(3):529–538

    Article  PubMed  PubMed Central  Google Scholar 

  41. O’Brien MER, Wigler N, Inbar M et al (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX™/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 15(3):440–449

    Article  PubMed  Google Scholar 

  42. Blum JL, Jones SE, Buzdar AU et al (1999) Multicenter phase II study of capecitabine in paclitaxel-refractory metastatic breast cancer. J Clin Oncol 17(2):485–485

    Article  CAS  PubMed  Google Scholar 

  43. Slamon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344(11):783–792

    Article  CAS  PubMed  Google Scholar 

  44. Vogel CL, Cobleigh MA, Tripathy D et al (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20(3):719–726

    Article  CAS  PubMed  Google Scholar 

  45. Lipton A, Ali SM, Leitzel K et al (2002) Elevated serum HER-2/neu level predicts decreased response to hormone therapy in metastatic breast cancer. J Clin Oncol 20(6):1467–1472

    Article  CAS  PubMed  Google Scholar 

  46. Johnston S, Pippen J, Pivot X et al (2009) Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor–positive metastatic breast cancer. J Clin Oncol 27(33):5538–5546

    Article  CAS  PubMed  Google Scholar 

  47. Guarneri V, Lenihan DJ, Valero V et al (2006) Long-term cardiac tolerability of trastuzumab in metastatic breast cancer: the M.D. Anderson cancer center experience. J Clin Oncol 24(25):4107–4115

    Article  CAS  PubMed  Google Scholar 

  48. Cobleigh MA, Langmuir VK, Sledge GW et al (2003) A phase I/II dose-escalation trial of bevacizumab in previously treated metastatic breast cancer. Semin Oncol 30:117–124

    Article  CAS  PubMed  Google Scholar 

  49. Valachis A, Polyzos NP, Patsopoulos NΑ, Georgoulias V, Mavroudis D, Mauri D (2010) Bevacizumab in metastatic breast cancer: a meta-analysis of randomized controlled trials. Breast Cancer Res Treat 122(1):1–7

    Article  CAS  PubMed  Google Scholar 

  50. Sambi M, Qorri B, Malardier-Jugroot C, Szewczuk M (2017) Advancements in polymer science: ‘Smart’ drug delivery systems for the treatment of cancer. MOJ Polym Sci 1(3):00016

    Google Scholar 

  51. Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30(11):592–599

    Article  CAS  PubMed  Google Scholar 

  52. Haley B, Frenkel E (2008) Nanoparticles for drug delivery in cancer treatment. Urol Oncol Semin Original Inv 26(1):57–64

    CAS  Google Scholar 

  53. Li X, McTaggart M, Malardier-Jugroot C (2016) Synthesis and characterization of a pH responsive folic acid functionalized polymeric drug delivery system. Biophys Chem 214–215:17–26

    Article  PubMed  CAS  Google Scholar 

  54. Li X, Szewczuk MR, Malardier-Jugroot C (2016) Folic acid-conjugated amphiphilic alternating copolymer as a new active tumor targeting drug delivery platform. Drug Des Devel Ther 10:4101–4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Heo DN, Yang DH, Moon H-J et al (2012) Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials 33(3):856–866

    Article  CAS  PubMed  Google Scholar 

  56. Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41(12):1842–1851

    Article  CAS  PubMed  Google Scholar 

  57. Marty M, Cognetti F, Maraninchi D et al (2005) Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2–positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol 23(19):4265–4274

    Article  CAS  PubMed  Google Scholar 

  58. Kaufman B, Mackey JR, Clemens MR et al (2009) Trastuzumab plus anastrozole aersus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2–positive, hormone receptor–positive metastatic breast cancer: results from the randomized phase III TAnDEM study. J Clin Oncol 27(33):5529–5537

    Article  CAS  PubMed  Google Scholar 

  59. Robert NJ, Diéras V, Glaspy J et al (2011) RIBBON-1: randomized, double-blind, placebo-controlled, phase III trial of chemotherapy with or without bevacizumab for first-line treatment of human epidermal growth factor receptor 2–negative, locally recurrent or metastatic breast cancer. J Clin Oncol 29(10):1252–1260

    Article  CAS  PubMed  Google Scholar 

  60. Miles DW, Chan A, Dirix LY et al (2010) Phase III study of bevacizumab plus docetaxel compared with placebo plus docetaxel for the first-line treatment of human epidermal growth factor receptor 2–negative metastatic breast cancer. J Clin Oncol 28(20):3239–3247

    Article  CAS  PubMed  Google Scholar 

  61. Sanchez-Rivera FJ, Jacks T (2015) Applications of the CRISPR-Cas9 system in cancer biology. Nat Rev Cancer 15(7):387–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lee JH, Zhao XM, Yoon I et al (2016) Integrative analysis of mutational and transcriptional profiles reveals driver mutations of metastatic breast cancers. Cell Discov 2:16025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wang CY, Uray IP, Mazumdar A, Mayer JA, Brown PH (2012) SLC22A5/OCTN2 expression in breast cancer is induced by estrogen via a novel intronic estrogen-response element (ERE). Breast Cancer Res Treat 134(1):101–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tran LM, Zhang B, Zhang Z et al (2011) Inferring causal genomic alterations in breast cancer using gene expression data. BMC Syst Biol 5:121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhang NG, Ge GQ, Meyer R et al (2008) Overexpression of Separase induces aneuploidy and mammary tumorigenesis. Proc Natl Acad Sci U S A 105(35):13033–13038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lefebvre C, Bachelot T, Filleron T et al (2016) Mutational profile of metastatic breast cancers: a retrospective analysis. PLoS Med 13(12):e1002201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Bai X, Zhang E, Ye H et al (2014) PIK3CA and TP53 gene mutations in human breast cancer tumors frequently detected by ion torrent DNA sequencing. PLoS One 9(6):e99306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Finn RS, Martin M, Rugo HS et al (2016) Palbociclib and letrozole in advanced breast cancer. N Engl J Med 375(20):1925–1936

    Article  CAS  PubMed  Google Scholar 

  69. Chirila C, Mitra D, Colosia A et al (2017) Comparison of palbociclib in combination with letrozole or fulvestrant with endocrine therapies for advanced/metastatic breast cancer: network meta-analysis. Curr Med Res Opin 33(8):1457–1466

    Article  CAS  PubMed  Google Scholar 

  70. Osborne C, Wilson P, Tripathy D (2004) Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist 9(4):361–377

    Article  CAS  PubMed  Google Scholar 

  71. Yao SH, He ZY, Chen C (2015) CRISPR/Cas9-mediated genome editing of epigenetic factors for cancer therapy. Hum Gene Ther 26(7):463–471

    Article  CAS  PubMed  Google Scholar 

  72. Trowbridge JJ, Sinha AU, Zhu N, Li M, Armstrong SA, Orkin SH (2012) Haploinsufficiency of Dnmt1 impairs leukemia stem cell function through derepression of bivalent chromatin domains. Genes Dev 26(4):344–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Szyf M, Pakneshan P, Rabbani SA (2004) DNA methylation and breast cancer. Biochem Pharmacol 68(6):1187–1197

    Article  CAS  PubMed  Google Scholar 

  74. Hu XC, Wong IH, Chow LW (2003) Tumor-derived aberrant methylation in plasma of invasive ductal breast cancer patients: clinical implications. Oncol Rep 10(6):1811–1815

    CAS  PubMed  Google Scholar 

  75. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170

    Article  CAS  PubMed  Google Scholar 

  77. Xue W, Chen S, Yin H et al (2014) CRISPR-mediated direct mutation of cancer genes in the mouse liver. Nature 514(7522):380–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fantozzi A, Christofori G (2006) Mouse models of breast cancer metastasis. Breast Cancer Res BCR 8(4):212

    Article  PubMed  CAS  Google Scholar 

  79. de Visser KE, Eichten A, Coussens LM (2006) Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6(1):24–37

    Article  PubMed  CAS  Google Scholar 

  80. Landskron G, De la Fuente M, Thuwajit P, Thuwajit C, Hermoso MA (2014) Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res 2014:19

    Article  CAS  Google Scholar 

  81. Wu Y, Zhou BP (2010) TNF-α/NF-κB/Snail pathway in cancer cell migration and invasion. Br J Cancer 102(4):639–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhao X, Xu Z, Li H (2017) NSAIDs use and reduced metastasis in cancer patients: results from a meta-analysis. Sci Rep 7(1):1875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Kumar N, Drabu S, Mondal SC (2013) NSAID’s and selectively COX-2 inhibitors as potential chemoprotective agents against cancer: 1st Cancer Update. Arab J Chem 6(1):1–23

    Article  CAS  Google Scholar 

  84. Dierssen-Sotos T, Gómez-Acebo I, de Pedro M et al (2016) Use of non-steroidal anti-inflammatory drugs and risk of breast cancer: the Spanish Multi-Case-control (MCC) study. BMC Cancer 16(1):660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Rankin EB, Giaccia AJ (2016) Hypoxic control of metastasis. Science (New York, NY) 352(6282):175–180

    Article  CAS  Google Scholar 

  86. Gilkes DM, Semenza GL (2013) Role of hypoxia-inducible factors in breast cancer metastasis. Future Oncol (London, England) 9(11):1623–1636

    Article  CAS  Google Scholar 

  87. Favaro E, Lord S, Harris AL, Buffa FM (2011) Gene expression and hypoxia in breast cancer. Genome Med 3(8):55–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Muz B, de la Puente P, Azab F, Azab AK (2015) The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia 3:83–92

    Article  PubMed  PubMed Central  Google Scholar 

  89. Wong CC-L, Gilkes DM, Zhang H et al (2011) Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci 108(39):16369–16374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Park JE, Tan HS, Datta A et al (2010) Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics 9(6):1085–1099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Onnis B, Rapisarda A, Melillo G (2009) Development of HIF-1 inhibitors for cancer therapy. J Cell Mol Med 13(9a):2780–2786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Burroughs SK, Kaluz S, Wang D, Wang K, Van Meir EG, Wang B (2013) Hypoxia inducible factor pathway inhibitors as anticancer therapeutics. Future Med Chem 5(5):553–572. https://doi.org/10.4155/fmc.4113.4117

    Article  CAS  PubMed  Google Scholar 

  93. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62

    Article  CAS  PubMed  Google Scholar 

  94. Jain RK (2013) Normalizing tumor microenvironment to treat cancer: bench to bedside to biomarkers. J Clin Oncol 31(17):2205–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Goel S, Wong AH, Jain RK (2012) Vascular normalization as a therapeutic strategy for malignant and nonmalignant disease. Cold Spring Harb Perspect Med 2(3):a006486

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Nielsen DL, Andersson M, Andersen JL, Kamby C (2010) Antiangiogenic therapy for breast cancer. Breast Cancer Res BCR 12(5):209

    Article  PubMed  CAS  Google Scholar 

  97. Ferrara N, Kerbel RS (2005) Angiogenesis as a therapeutic target. Nature 438(7070):967–974

    Article  CAS  PubMed  Google Scholar 

  98. Zhang P, Gao WY, Turner S, Ducatman BS (2003) Gleevec (STI-571) inhibits lung cancer cell growth (A549) and potentiates the cisplatin effect in vitro. Mol Cancer 2:1

    Article  PubMed  PubMed Central  Google Scholar 

  99. Brufsky A, Rivera RR, Hurvitz SA et al (2010) Progression-free survival. (PFS) in patient subgroups in RIBBON-2, a phase III trial of chemotherapy (chemo) plus or minus bevacizumab (BV) for second-line treatment of HER2-negative, locally recurrent or metastatic breast cancer (MBC). J Clin Oncol 28:15_suppl, 1021

    Article  Google Scholar 

  100. Qian B-Z, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78

    Article  CAS  PubMed  Google Scholar 

  102. Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124(2):263–266

    Article  CAS  PubMed  Google Scholar 

  103. Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27(45):5904–5912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Pyonteck SM, Akkari L, Schuhmacher AJ et al (2013) CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat Med 19(10):1264–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Mao Y, Keller ET, Garfield DH, Shen K, Wang J (2013) Stromal cells in tumor microenvironment and breast cancer. Cancer Metastasis Rev 32(1–2):303–315

    Article  PubMed  PubMed Central  Google Scholar 

  106. Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA (2009) Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS One 4(11):e7965

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Hu Y-L, Fu Y-H, Tabata Y, Gao J-Q (2010) Mesenchymal stem cells: a promising targeted-delivery vehicle in cancer gene therapy. J Control Release 147(2):154–162

    Article  CAS  PubMed  Google Scholar 

  108. Studeny M, Marini FC, Dembinski JL et al (2004) Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. JNCI J Natl Cancer Inst 96(21):1593–1603

    Article  CAS  PubMed  Google Scholar 

  109. Boelens Mirjam C, Wu Tony J, Nabet Barzin Y et al (2014) Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 159(3):499–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Suetsugu A, Honma K, Saji S, Moriwaki H, Ochiya T, Hoffman RM (2013) Imaging exosome transfer from breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models. Adv Drug Deliv Rev 65(3):383–390

    Article  CAS  PubMed  Google Scholar 

  111. Savina A, Furlán M, Vidal M, Colombo MI (2003) Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J Biol Chem 278(22):20083–20090

    Article  CAS  PubMed  Google Scholar 

  112. King HW, Michael MZ, Gleadle JM (2012) Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer 12(1):421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bruce WR, Van Der Gaag H (1963) A quantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature 199:79–80

    Article  CAS  PubMed  Google Scholar 

  114. Dick JE (2003) Breast cancer stem cells revealed. Proc Natl Acad Sci U S A 100(7):3547–3549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li C, Heidt DG, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037

    Article  CAS  PubMed  Google Scholar 

  116. Dalerba P, Dylla SJ, Park IK et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 104(24):10158–10163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhao J (2016) Cancer stem cells and chemoresistance: the smartest survives the raid. Pharmacol Ther 160:145–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Abdullah LN, Chow EK (2013) Mechanisms of chemoresistance in cancer stem cells. Clin Transl Med 2(1):3

    Article  PubMed  PubMed Central  Google Scholar 

  120. Longley DB, Johnston PG (2005) Molecular mechanisms of drug resistance. J Pathol 205(2):275–292

    Article  CAS  PubMed  Google Scholar 

  121. Schwab LP, Peacock DL, Majumdar D et al (2012) Hypoxia-inducible factor 1alpha promotes primary tumor growth and tumor-initiating cell activity in breast cancer. Breast Cancer Res BCR 14(1):R6

    Article  CAS  PubMed  Google Scholar 

  122. Wilson TR, Fridlyand J, Yan Y et al (2012) Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 487(7408):505–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Patel NM, Nozaki S, Shortle NH et al (2000) Paclitaxel sensitivity of breast cancer cells with constitutively active NF-kappaB is enhanced by IkappaBalpha super-repressor and parthenolide. Oncogene 19(36):4159–4169

    Article  CAS  PubMed  Google Scholar 

  124. Chow EK, Zhang XQ, Chen M et al (2011) Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Transl Med 3(73):73ra21

    Article  PubMed  Google Scholar 

  125. Li X, Sambi M, DeCarlo A et al (2018) Functionalized folic acid-conjugated amphiphilic alternating copolymer actively targets 3D multicellular tumour spheroids and delivers the hydrophobic drug to the inner core. Nanomaterials 8: 588–608

    Article  PubMed Central  CAS  Google Scholar 

  126. Hartmann LC, Keeney GL, Lingle WL et al (2007) Folate receptor overexpression is associated with poor outcome in breast cancer. Int J Cancer 121(5):938–942

    Article  CAS  PubMed  Google Scholar 

  127. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12(4):252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Demaria S, Kawashima N, Yang AM et al (2005) Immune-mediated inhibition of metastases after treatment with local radiation and CTLA-4 blockade in a mouse model of breast cancer. Clin Cancer Res Off J Am Assoc Cancer Res 11(2 Pt 1):728–734

    CAS  Google Scholar 

  129. van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 190(3):355–366

    Article  PubMed  PubMed Central  Google Scholar 

  130. Freeman GJ, Long AJ, Iwai Y et al (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192(7):1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11(2):141–151

    Article  CAS  PubMed  Google Scholar 

  132. Mittendorf EA, Philips AV, Meric-Bernstam F et al (2014) PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res 2(4):361–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P (2017) Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 14(7):399–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Meats JE, Steele L, Bowen JG (1993) Identification of phospholipase D (PLD) activity in mouse peritoneal macrophages. Agents Actions 39 Spec No:C14–C16

    Article  CAS  PubMed  Google Scholar 

  135. Henkels KM, Muppani NR, Gomez-Cambronero J (2016) PLD-specific small-molecule inhibitors decrease tumor-associated macrophages and neutrophils infiltration in breast tumors and lung and liver metastases. PLoS One 11(11):e0166553

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Tan M, Yu D (2007) Molecular mechanisms of erbB2-mediated breast cancer chemoresistance. Adv Exp Med Biol 608:119–129

    Article  CAS  PubMed  Google Scholar 

  137. Slamon DJ, Godolphin W, Jones LA et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244(4905):707–712

    Article  CAS  PubMed  Google Scholar 

  138. Wang Y (2010) Breast cancer metastasis driven by ErbB2 and 14-3-3zeta: a division of labor. Cell Adhes Migr 4(1):7–9

    Article  CAS  Google Scholar 

  139. Eccles SA (2011) The epidermal growth factor receptor/Erb-B/HER family in normal and malignant breast biology. Int J Dev Biol 55(7–9):685–696

    Article  PubMed  Google Scholar 

  140. Hoelder S, Clarke PA, Workman P (2012) Discovery of small molecule cancer drugs: successes, challenges and opportunities. Mol Oncol 6(2):155–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Li D, Marchenko ND (2017) ErbB2 inhibition by lapatinib promotes degradation of mutant p53 protein in cancer cells. Oncotarget 8(4):5823–5833

    PubMed  Google Scholar 

  142. Dziadkowiec KN, Gasiorowska E, Nowak-Markwitz E, Jankowska A (2016) PARP inhibitors: review of mechanisms of action and BRCA1/2 mutation targeting. Prz Menopauzalny 15(4):215–219

    CAS  PubMed  Google Scholar 

  143. Ouchi T, Monteiro AN, August A, Aaronson SA, Hanafusa H (1998) BRCA1 regulates p53-dependent gene expression. Proc Natl Acad Sci U S A 95(5):2302–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Morales J, Li L, Fattah FJ et al (2014) Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr 24(1):15–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Chalmers AJ (2009) The potential role and application of PARP inhibitors in cancer treatment. Br Med Bull 89:23–40

    Article  CAS  PubMed  Google Scholar 

  146. O’Shaughnessy J, Osborne C, Pippen JE et al (2011) Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med 364(3):205–214

    Article  PubMed  Google Scholar 

  147. Murai J, Huang SY, Das BB et al (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72(21):5588–5599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gilmour AM, Abdulkhalek S, Cheng TS et al (2013) A novel epidermal growth factor receptor-signaling platform and its targeted translation in pancreatic cancer. Cell Signal25(12):2587–2603

    Article  CAS  PubMed  Google Scholar 

  149. Amith SR, Jayanth P, Franchuk S et al (2010) Neu1 desialylation of sialyl α-2,3-linked β-galactosyl residues of TOLL-like is essential for receptor activation and cellular signaling. Cellular Signalling 22: 314–324

    Article  CAS  PubMed  Google Scholar 

  150. Abdulkhalek S, Amith SR, Franchuk SL et al (2011) Neu1 sialidase and matrix metalloproteinase-9 cross-talk Is essential for Toll-like receptor activation and cellular signaling. J Biol Chem 286 (42): 36532–36549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Abdulkhalek S, Guo M, Amith SR et al (2012) G-protein coupled receptor agonists mediate Neu1 sialidase and matrix metalloproteinase-9 cross-talk to induce transactivation of TOLL-like receptors and cellular signaling. Cellular Signalling 24: 2035–2042

    Article  CAS  PubMed  Google Scholar 

  152. Abdulkhalek S, Szewczuk MR (2013) Neu1 sialidase and matrix metalloproteinase-9 cross-talk regulates nucleic acid-induced endosomal TOLL-like receptor-7 and -9 activation, cellular signaling and pro-inflammatory responses. Cellular Signalling 25: 2093–2105

    Article  CAS  PubMed  Google Scholar 

  153. Alghamdi F, Guo M, Abdulkhalek S et al (2014) A novel insulin receptor-signaling platform and its link to insulin resistance and type 2 diabetes. Cellular Signalling 26: 1355–1368

    Article  CAS  PubMed  Google Scholar 

  154. Haxho F, Alghamdi F, Neufeld RJ et al (2014) Novel Insulin Receptor-Signaling Platform. Int J Diabetes Clin Res 1:1-10

    Article  Google Scholar 

  155. Haxho F, Haq S, Szewczuk MR (2018) Biased G protein-coupled receptor agonism mediates Neu1 sialidase and matrix metalloproteinase-9 crosstalk to induce transactivation of insulin receptor signaling. Cellular Signalling 43: 71–84

    Article  CAS  PubMed  Google Scholar 

  156. Haxho F, Neufeld RJ, Szewczuk MR (2016) Neuraminidase-1: A novel therapeutic target in multistage tumorigenesis. Oncotarget 7: 40860–40881

    Article  PubMed  PubMed Central  Google Scholar 

  157. Hrynyk M, Ellis JP, Haxho F et al (2015) Therapeutic designed poly (lactic-co-glycolic acid) cylindrical oseltamivir phosphate-loaded implants impede tumor neovascularization, growth and metastasis in mouse model of human pancreatic carcinoma. Drug Des Devel Ther 9:4573–4586

    CAS  PubMed  PubMed Central  Google Scholar 

  158. O’Shea LK, Abdulkhalek S, Allison S, Neufeld RJ, Szewczuk MR (2014) Therapeutic target-ing of Neu1 sialidase with oseltamivir phosphate (Tamiflu(R)) disables cancer cell survival in human pancreatic cancer with acquired chemoresistance. Oncotarget Ther 7:117– 134

    Google Scholar 

  159. Abdulkhalek S, Geen OD, Brodhagenn L, Haxho F et al (2014) Transcriptional factor snail controls tumor neovascularization, growth and metastasis in mouse model of human ovarian carcinoma. Clinical and Translational Medicine 3: 1-28

    Google Scholar 

  160. Haxho F, Allison S, Alghamdi F et al (2014) Oseltamivir phosphate monotherapy ablates tumor neovascularization, growth, and metastasis in mouse model of human triple-negative breast adenocarcinoma. Breast Cancer Targets Ther 6:191–203

    Google Scholar 

  161. Abdulkhalek S, Hrynyk M, Szewczuk MR (2013) A novel G-protein-coupled receptorsignaling platform and its targeted translation in human disease. Res Rep Biochem 3:17–30

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants to MR Szewczuk from the Natural Sciences and Engineering Research Council of Canada (NSERC), a private sector cancer funding from the Josefowitz Family and Encyt Technologies, Inc. to MR Szewczuk.

M Sambi is a recipient of the Queen’s Graduate Award (QGA). B Qorri is a recipient of the QGA and the 2017 Terry Fox Research Institute Transdisciplinary Training Program in Cancer Research. The authors report no other conflicts of interest in this work.

Author Contributions

All authors contributed equally toward drafting and critically revising the paper and agree to be equally accountable for all aspects of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myron R. Szewczuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sambi, M., Qorri, B., Harless, W., Szewczuk, M.R. (2019). Therapeutic Options for Metastatic Breast Cancer. In: Ahmad, A. (eds) Breast Cancer Metastasis and Drug Resistance. Advances in Experimental Medicine and Biology, vol 1152. Springer, Cham. https://doi.org/10.1007/978-3-030-20301-6_8

Download citation

Publish with us

Policies and ethics