Skip to main content

Finite Dust Clusters

  • Chapter
  • First Online:
Physics of Dusty Plasmas

Part of the book series: Lecture Notes in Physics ((LNP,volume 962))

  • 863 Accesses

Abstract

Now, collective effects in finite systems are discussed. Finite systems are particularly appealing because of the interplay between the electrostatic repulsion among the particles and the confinement due to an external potential. This interplay determines the structure of a cluster and also its dynamics. Structure and dynamics dramatically depend on the exact particle number and the formation of highly symmetric configurations with magic particle numbers is observed. Finally, also phase transitions in these finite systems are presented and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is easily seen from a simple analogy: Starting from the equation of motion for a simple spring

    $$\displaystyle \begin{aligned} m\ddot{x}=-kx \quad \to -\omega^2x=-(k/m)x \end{aligned}$$

    assuming an oscillatory solution \(x\to x\exp (-\mathrm{i} \omega t)\). Now, for the many-particle case km is replaced by the second derivatives, i.e the dynamical matrix A, and x becomes the vector of particle positions in x, y.

References

  1. J.J. Thomson, Philos. Mag. 39, 237 (1904)

    Article  Google Scholar 

  2. A. Mortensen, E. Nielsen, T. Matthey, M. Drewsen, Phys. Rev. Lett. 96, 103001 (2006)

    Article  ADS  Google Scholar 

  3. R.W. Hasse, Phys. Rev. Lett. 90, 204801 (2003)

    Article  ADS  Google Scholar 

  4. P. Leiderer, W. Ebner, V.B. Shikin, Surf. Sci. 113, 405 (1982)

    Article  ADS  Google Scholar 

  5. L.P. Kouwenhoven, D.G. Austing, S. Tarucha, Rep. Prog. Phys. 64(6), 701 (2001). http://stacks.iop.org/0034-4885/64/i=6/a=201

    Article  ADS  Google Scholar 

  6. M. Bonitz, C. Henning, D. Block, Rep. Prog. Phys. 73(6), 066501 (2010). http://stacks.iop.org/0034-4885/73/i=6/a=066501

    Article  ADS  Google Scholar 

  7. G.J. Kalman, J.M. Rommel, K. Blagoev (eds.), Strongly Coupled Coulomb Systems (Plenum Press, New York, 1998)

    Google Scholar 

  8. A. Melzer, B. Buttenschön, T. Miksch, M. Passvogel, D. Block, O. Arp, A. Piel, Plasma Phys. Controlled Fusion 52, 124028 (2010)

    Article  ADS  Google Scholar 

  9. A. Homann, A. Melzer, S. Peters, R. Madani, A. Piel, Phys. Rev. E 56, 7138 (1997)

    Article  ADS  Google Scholar 

  10. B. Liu, K. Avinash, J. Goree, Phys. Rev. Lett. 91, 255003 (2003)

    Article  ADS  Google Scholar 

  11. A. Melzer, Phys. Rev. E 73, 056404 (2006)

    Article  ADS  Google Scholar 

  12. T.E. Sheridan, K.D. Wells, Phys. Rev. E 81, 016404 (2010)

    Article  ADS  Google Scholar 

  13. W.T. Juan, Z.H. Huang, J.W. Hsu, Y.J. Lai, L. I, Phys. Rev. E 58(6), 6947 (1998)

    Article  ADS  Google Scholar 

  14. M. Klindworth, A. Melzer, A. Piel, V. Schweigert, Phys. Rev. B 61, 8404 (2000)

    Article  ADS  Google Scholar 

  15. F.M.H. Cheung, C. Brunner, A.A. Samarian, B.W. James, AIP Conf. Proc. 799, 185 (2005)

    Article  ADS  Google Scholar 

  16. A. Melzer, Phys. Rev. E 67, 016411 (2003)

    Article  ADS  Google Scholar 

  17. V.M. Bedanov, F. Peeters, Phys. Rev. B 49, 2667 (1994)

    Article  ADS  Google Scholar 

  18. O. Arp, D. Block, M. Klindworth, A. Piel, Phys. Plasmas 12, 122102 (2005)

    Article  ADS  Google Scholar 

  19. S. Käding, D. Block, A. Melzer, A. Piel, H. Kählert, P. Ludwig, M. Bonitz, Phys. Plasmas 15, 073710 (2008)

    Article  ADS  Google Scholar 

  20. O. Arp, D. Block, A. Piel, A. Melzer, Phys. Rev. Lett. 93, 165004 (2004)

    Article  ADS  Google Scholar 

  21. T. Antonova, B.M. Annaratone, D.D. Goldbeck, V. Yaroshenko, H.M. Thomas, G.E. Morfill, Phys. Rev. Lett. 96, 115001 (2006)

    Article  ADS  Google Scholar 

  22. R.W. Hasse, V.V. Avilov, Phys. Rev. A 44, 4506 (1991)

    Article  ADS  Google Scholar 

  23. M. Bonitz, D. Block, O. Arp, V. Golubnychiy, H. Baumgartner, P. Ludwig, A. Piel, A. Filinov, Phys. Rev. Lett. 96, 075001 (2006)

    Article  ADS  Google Scholar 

  24. D. Block, S. Käding, A. Melzer, A. Piel, H. Baumgartner, M. Bonitz, Phys. Plasmas 15, 040701 (2008)

    Article  ADS  Google Scholar 

  25. P. Ludwig, S. Kosse, M. Bonitz, Phys. Rev. E 71, 046403 (2005)

    Article  ADS  Google Scholar 

  26. S. Apolinario, B. Partoens, F. Peters, New J. Phys. 9, 283 (2007)

    Article  ADS  Google Scholar 

  27. Y.J. Lai, L. I, Phys. Rev. E 60(4), 4743 (1999)

    Article  ADS  Google Scholar 

  28. C. Henning, H. Baumgartner, A. Piel, P. Ludwig, V. Golubnichiy, M. Bonitz, D. Block, Phys. Rev. E 74, 056403 (2006)

    Article  ADS  Google Scholar 

  29. D. Block, M. Kroll, O. Arp, A. Piel, S. Käding, Y. Ivanov, A. Melzer, C. Henning, H. Baumgartner, P. Ludwig, M. Bonitz, Plasma Phys. Control. Fusion 49, B109 (2007)

    Article  ADS  Google Scholar 

  30. A. Piel, J.A. Goree, Phys. Rev. E 88, 063103 (2013). https://doi.org/10.1103/PhysRevE.88.063103.

    Article  ADS  Google Scholar 

  31. V.A. Schweigert, F. Peeters, Phys. Rev. B 51, 7700 (1995)

    Article  ADS  Google Scholar 

  32. R. Ichiki, Y. Ivanov, M. Wolter, Y. Kawai, A. Melzer, Phys. Rev. E 70, 066404 (2004)

    Article  ADS  Google Scholar 

  33. M. Wolter, A. Melzer, Phys. Rev. E 71, 036414 (2005)

    Article  ADS  Google Scholar 

  34. V. Nosenko, J. Goree, A. Piel, Phys. Plasmas 13, 032106 (2006)

    Article  ADS  Google Scholar 

  35. J. Schablinski, D. Block, A. Piel, A. Melzer, H. Thomsen, H. Kählert, M. Bonitz, Phys. Plasmas 19, 013705 (2012)

    Article  ADS  Google Scholar 

  36. A. Schella, T. Miksch, A. Melzer, J. Schablinski, D. Block, A. Piel, H. Thomsen, P. Ludwig, M. Bonitz, Phys. Rev. E 84, 056402 (2011)

    Article  ADS  Google Scholar 

  37. A. Schella, M. Mulsow, A. Melzer, H. Kählert, D. Block, P. Ludwig, M. Bonitz, New J. Phys. 15, 113021 (2013)

    Article  ADS  Google Scholar 

  38. A. Schella, M. Mulsow, A. Melzer, J. Schablinski, D. Block, Phys. Rev. E 87, 063102 (2013)

    Article  ADS  Google Scholar 

  39. M. Mulsow, A. Melzer, Phys. Rev. E 96, 053202 (2017). https://doi.org/110.1103/PhysRevE.96.053202

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Melzer, A. (2019). Finite Dust Clusters. In: Physics of Dusty Plasmas. Lecture Notes in Physics, vol 962. Springer, Cham. https://doi.org/10.1007/978-3-030-20260-6_8

Download citation

Publish with us

Policies and ethics