Skip to main content

Robot arm and control architecture integration on a UGV for precision agriculture

  • Conference paper
  • First Online:
Advances in Mechanism and Machine Science (IFToMM WC 2019)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 73))

Included in the following conference series:

Abstract

The aim of this work is to present a novel UGV equipped with a collaborative robot arm developed for the agricultural sector. The UGV, named Agri.q02, has eight degrees of freedom that permit to work in unstructured environments. The rover is provided with a landing platform for UAVs and a positioning mechanism is able to keep the platform horizontal above the soil. The robotic system is powered by a 12 V battery and is equipped with solar panels, located on the landing platform. To collect samples for crops monitoring purposes and to cooperate with the drone on the platform, a robot arm will be mounted on the UGV. The manipulator will be placed on the rover with a mechanism that permits to enlarge the workspace of the end effector and to overspread a wide portion of the platform. The solution adopted will be described in detail. Indexes will be given to evaluate performance in terms of actual workspace. Finally, the mechatronic system architecture and the operative modalities of the robotic system will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bechar, A., Vigneault, C.: Agricultural robots for field operations: concepts and components. Biosystems Engineering, vol. 149, pp. 94-111 (2016).

    Google Scholar 

  2. Shamshiri, R. R., Weltzien, C., Hameed, I. A., Yule, I. J., Grift, T. E., Balasundram, S. K., Pitonakova, L., Ahmad, D. and Chowdhary, G.: Research and development in agricultural robotics: a perspective of digital farming. International Journal of Agricultural and Biological Engineering, vol. 11(4), pp. 1-14 (2018).

    Google Scholar 

  3. Ruckelshausen, A., Biber, P., Dorna M., Gremnes H., Klose, R., Linz, A. et al.: BoniRob - an autonomous field robot platform for individual plant phenotyping. Precision Agriculture, 9(841), pp. 841-847 (2009).

    Google Scholar 

  4. Roure, F., Moreno, G., Soler, M., Faconti, D., Serrano, D., Astolfi, P. et al.: GRAPE: Ground Robot for vineyArd Monitoring and ProtEction. Iberian Robotics Conference, pp. 249-260 (2017).

    Google Scholar 

  5. Yaguchi, H., Nagahama, K., Hasegawa, T., Inaba, M.: Development of an autonomous tomato harvesting robot with rotational plucking gripper. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Daejeon, Korea, pp. 652-657 (2016).

    Google Scholar 

  6. Quaglia, G., Cavallone, P., Visconte, C.: Agri_q: agriculture UGV for monitoring and drone landing. In: Proceedings of the 4th IFToMM Symposium on Mechanism Design for Robotics 66, pp. 413-423, Udine, Italy (2018).

    Google Scholar 

  7. Quaglia, G., Visconte, C., Scimmi, L.S., Melchiorre, M., Cavallone, P., Pastorelli, S.: Design of the positioning mechanism of a UGV for precision agriculture. In: Proceedings of the 15th IFToMM World Congress, Krakow, Poland (2019).

    Google Scholar 

  8. Melchiorre, M., Scimmi, L.S., Mauro, S., Pastorelli, S.: Influence of Human Limb Motion Speed in a Collaborative Handover Task. In: Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics, vol. 2, pp. 349-356, Porto, Portugal (2018).

    Google Scholar 

  9. Mauro, S., Pastorelli, S., Scimmi, L.S.: Collision Avoidance Algorithm for Collaborative Robotics. Int. J. Of Automation Technology, vol. 11(3), pp. 481-489 (2017).

    Google Scholar 

  10. Mauro, S., Scimmi, L.S., Pastorelli, S.: Collision Avoidance Systems for Collaborative Robotics. Mechanisms and Machine Science, vol. 49, pp. 344-352 (2018).

    Google Scholar 

  11. Scimmi, L.S., Melchiorre, M., Mauro, S., Pastorelli, S.: Multiple Collision Avoidance between Human Limbs and Robot Links Algorithm in Collaborative Tasks. In: Proceedings of the 15th International Conference on Informatics in Control, Automation and Robotics, vol. 2, pp. 291-298, Porto, Portugal (2018).

    Google Scholar 

  12. Kinova Robotics Homepage, https://www.kinovarobotics.com/en, last access 06/03/2019

Download references

Acknowledgements

We gratefully thank the PIC4SeR - PoliTO Interdepartmental Centre for Service Robotics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Sabatino Scimmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quaglia, G., Visconte, C., Scimmi, L.S., Melchiorre, M., Cavallone, P., Pastorelli, S. (2019). Robot arm and control architecture integration on a UGV for precision agriculture. In: Uhl, T. (eds) Advances in Mechanism and Machine Science. IFToMM WC 2019. Mechanisms and Machine Science, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-20131-9_231

Download citation

Publish with us

Policies and ethics