Skip to main content

Novel Actuation Design of an Active Elbow Orthosis

  • Conference paper
  • First Online:
Advances in Mechanism and Machine Science (IFToMM WC 2019)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 73))

Included in the following conference series:

Abstract

The rehabilitation of limbs is achieved with the assistance of a large range of devices. A novel solution of elbow active orthosis is described regard-ing the structure, calculus and design of the exoskeleton. The solution is based on a mechanism with gears and linkages with linear actuation, which ensures linear transmission function, singularity free and light construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maciejasz, P., Eschweiler J., Gerlach-Hahn K., Jansen-Troy A., Leonhardt, S.: A survey on robotic devices for upper limb rehabilitation. J Neuroeng Rehabil. 11:3 (2014).

    Google Scholar 

  2. Cheng, HS., Ju, MS., Lin, CCK.: Improving elbow torque output of stroke patients with assistive torque controlled by EMG signals. J Biomech Eng.125(6):881–886 (2003).

    Google Scholar 

  3. Cozens, JA.: Robotic assistance of an active upper limb exercise in neurologically im-paired patients. Rehabil Eng, IEEE Trans.7(2):254–256 (1999).

    Google Scholar 

  4. Kiguchi, K., Esaki, R., Tsuruta, T., Watanabe, K., Fukuda, T.: An exoskeleton system for elbow joint motion rehabilitation. In: Proc. IEEE/ASME International Conference on Ad-vanced Intelligent Mechatronics (AIM) Port Island, Japan, 1228–1233. vol.2.( 2003).

    Google Scholar 

  5. Sulzer, JS., Peshkin, MA., Patton, JL.: Design of a Mobile, Inexpensive Device for Upper Extremity Rehabilitation at Home. In: Proc. IEEE 10th International Conference on Reha-bilitation Robotics (ICORR) Noordwijk, Netherlands, 933–937 (2007).

    Google Scholar 

  6. Oda, K., Isozumi, S., Ohyama, Y., Tamida, K., Kikuchi, T., Furusho, J.: Development of isokinetic and iso-contractile exercise machine MEM-MRB using MR brake. In: Proc. IEEE Int. Conf. on Rehabilitation Robotics (ICORR) Kyoto, Japan, 6–11 (2009).

    Google Scholar 

  7. Song, R., Yu Tong, K., Hu, X., Li, L.: Assistive control system using continuous myoelec-tric signal in robot-aided arm training for patients after stroke. IEEE Trans Neural Syst Rehabil Eng. 16(4):371–379 (2008).

    Google Scholar 

  8. Mavroidis, C., Nikitczuk, J., Weinberg, B., Danaher, G., Jensen, K., Pelletier, P., Prugnarola, J., Stuart, R., Arango, R., Leahey, M., Pavone, R., Provo, A., Yasevac, D.: Smart portable rehabilitation devices. J Neuroeng Rehabil. 2:18(2005).

    Google Scholar 

  9. Pylatiuk, C., Kargov, A., Gaiser, I., Werner, T., Schulz, S., Bretthauer, G.: Design of a flexible fluidic actuation system for a hybrid elbow orthosis. In: Proc. IEEE International Conference on Rehabilitation Robotics (ICORR) Kyoto, Japan, 167–171 (2009).

    Google Scholar 

  10. Vanderniepen, I., Van Ham, R., Van Damme, M., Versluys, R., Lefeber, D.: A powered elbow orthosis using compliant actuation. In: Proc. IEEE International Conference on Re-habilitation Robotics (ICORR) Kyoto, Japan, Orthopaedic rehabilitation. 172–177 (2009).

    Google Scholar 

  11. Yagin, N.: Apparatus for Facilitating Walking. U.S. Patent 440,684 (1890).

    Google Scholar 

  12. Kelly, L.C.: Pedomotor. U. S. Patent 1,308,675, (1919).

    Google Scholar 

  13. *** Hardiman I Prototype Project, General Electric Company, (1969).

    Google Scholar 

  14. Mavroidis, C., et al.: Smart portable rehabilitation devices. Journal of NeuroEngineering and Rehabilitation, 2:18 1-15 (2005).

    Google Scholar 

  15. Ripel, T., Krejsa, J., Hrbacek, J., Cizmar, I.: Active Elbow Orthosis. International Journal of Advanced Robotic Systems, 11:143 1-10 (2014).

    Google Scholar 

  16. https://www.symmetric-designs.com, last accessed Dec. 2018

  17. Saremi, H., Chamani, V., Vahab-Kashani, R.: A Newly Designed Tennis Elbow Orthosis With a Traditional Tennis Elbow Strap in Patients With Lateral Epicondylitis. Trauma Mon. 21(3) 1-8 (2016).

    Google Scholar 

  18. Safonov, A.: Development of a wearable elbow orthosis. Master thesis, Department of Electrical Power Engineering and Mechatronics, Tallin University of Technology 1-80 (2017).

    Google Scholar 

  19. Vanderniepen, I., Van Ham, R., Van Damme, M., Lefeber, D.: Design of a powered elbow orthosis for orthopaedic rehabilitation using compliant actuation. In: Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics Scottsdale 1-6 (2008).

    Google Scholar 

  20. Schulz, S, Pylatiuk, C., Kargov, A., Gaiser, I., Schill, O., Reischl, M., Eck, U., Rupp, R.: Design of a Hybrid Powered Upper Limb Orthosis. In: IFMBE Proceedings 1-4 (2010).

    Google Scholar 

  21. Lovasz, E.-C., Modler, K.-H., Pop, C., Pop, F., Mărgineanu D.T., Maniu, I.: Type Synthe-sis and Analysis of Geared Linkages with Linear Actuation, Mechanika, 24(1), 108-114 (2018).

    Google Scholar 

  22. Lovasz, E.-C., Margineanu, D.T., Ciupe, V., Maniu, I. Gruescu, C.M., Zabava, E.S., Stan, S.D.: Design and control solutions for haptic elbow exoskeleton module used in space tel-erobotics, Mechanism and Machine Theory, 107, 384-398 (2017).

    Google Scholar 

  23. Modler K.-H., Lovasz E.-C., Perju D., Hollmann Ch.: Geared Linkages with Linear Dis-placement Actuator Used as Function Generating Mechanisms, 11th World Congress in Mechanism and Machine Science, Tianjin 3, 1254-1259 (2004).

    Google Scholar 

  24. https://www.actuonix.com/L12-P-Micro-Linear-Actuator-with-Position-Feedback-p/l12-p.htm?1=1&CartID=0 (last accessed on 26.06.2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Sticlaru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lovasz, EC. et al. (2019). Novel Actuation Design of an Active Elbow Orthosis. In: Uhl, T. (eds) Advances in Mechanism and Machine Science. IFToMM WC 2019. Mechanisms and Machine Science, vol 73. Springer, Cham. https://doi.org/10.1007/978-3-030-20131-9_151

Download citation

Publish with us

Policies and ethics