Skip to main content

Real- and Complex-Energy Non-conserving Particle Number Pairing Solution

  • Chapter
  • First Online:
Integrability, Supersymmetry and Coherent States

Part of the book series: CRM Series in Mathematical Physics ((CRM))

  • 516 Accesses

Abstract

Many-body open quantum systems are characterized by the correlations between bound and scattering states. In contrast to a closed system (i.e., a very well bound many-body system), the continuous part of the energy spectrum has to be considered explicitly due to the proximity of the Fermi level to the continuum’s threshold. In this work we show how to introduce these correlations through the continuum single-particle level density (CSPLD) in the pairing framework. By isolating the resonances of the system using an analytic continuation, we arrive at the Berggren (complex-energy) representation of the pairing solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Okołowicz, M. Płoszajczak, I. Rotter, Phys. Rep. 374, 271 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Volya, V. Zelevinsky, Phys. Rev. C 74, 064314 (2006)

    Article  ADS  Google Scholar 

  3. R. Id Betan, R.J. Liotta, N. Sandulescu, T. Vertse, Phys. Rev. Lett. 89, 042501 (2002)

    Article  ADS  Google Scholar 

  4. N. Michel, W. Nazarewicz, M. Płoszajczak, K. Bennaceur, Phys. Rev. Lett. 89, 042502 (2002)

    Article  ADS  Google Scholar 

  5. J. Dobaczewski, W. Nazarewicz, T.R. Werner, J.F. Berger, C.R. Chinn, J. Decharge, Phys. Rev. C 53, 02809 (1996)

    Article  ADS  Google Scholar 

  6. K. Bennaceur, J. Dobaczewski, M. Płoszajczak, Phys. Rev. C 60, 034308 (1999)

    Article  ADS  Google Scholar 

  7. S.A. Fayans, S.V. Tolokonnikov, D. Zawischa, Physics Letters B 491, 245 (2000)

    Article  ADS  Google Scholar 

  8. M. Grasso, N. Sandulescu, N. Van Giai, R.J. Liotta, Phys. Rev. C 64, 064321 (2001)

    Article  ADS  Google Scholar 

  9. N. Sandulescu, R.J. Liotta, R. Wyss, Phys. Lett. B 394, 6 (1997)

    Article  ADS  Google Scholar 

  10. N. Sandulescu, O. Civitarese, R.J. Liotta, Phys. Rev. C 61, 044317 (2000)

    Article  ADS  Google Scholar 

  11. N. Sandulescu, N. Van Giai, R.J. Liotta, Phys. Rev. C 61, 061301(R) (2000)

    Google Scholar 

  12. A.T. Kruppa, P.H. Heenen, R.J. Liotta, Phys. Rev. C 63, 044324 (2001)

    Article  ADS  Google Scholar 

  13. R. M. Id Betan, Nucl. Phys. 879, 14 (2012)

    Article  Google Scholar 

  14. E. Beth, G. Uhlenbeck, Physica 4, 915 (1937)

    Article  ADS  Google Scholar 

  15. U. Mosel, Physcis Letters B 46, 8 (1973).

    Article  ADS  Google Scholar 

  16. W.A. Fowler, C.A. Engelbrech, Astrophys. J. 226, 984 (1978).

    Article  ADS  Google Scholar 

  17. P. Bonche, S. Levit, D. Vautherin, Nucl. Phys. A 427, 278 (1984)

    Article  ADS  Google Scholar 

  18. D.R. Dean, U. Mozel, Z. Phys. A 322, 647 (1985)

    Google Scholar 

  19. R.J. Charity, L.G. Sobotka, Phys. Rev. C 71, 024310 (2005)

    Article  ADS  Google Scholar 

  20. R.M. Id Betan, Phys. Rev. C 85, 064309 (2012)

    Article  ADS  Google Scholar 

  21. R.M. Id Betan, C.E. Repetto, Nucl. Phys. A 960, 131 (2017)

    Article  ADS  Google Scholar 

  22. R.M. Id Betan, Nucl. Phys. A 959, 147 (2017)

    Article  ADS  Google Scholar 

  23. R. M. Id Betan, IOP Conf. Ser.: J. Phys.: Conf. Ser. 839, 012003 (2017)

    Google Scholar 

  24. R.W. Richardson, Phys. Lett. 3, 277 (1963)

    Article  ADS  Google Scholar 

  25. R.W. Richardson, N. Sherman, Nucl. Phys. 52, 221 (1964)

    Article  Google Scholar 

  26. T. Berggren, Nucl. Phys. A 109, 265 (1968)

    Article  ADS  Google Scholar 

  27. A.M. Lane, Nuclear Theory. Pairing Force Correlations and Collective Motion (W. A. Benjamin, Inc., New York, 1964)

    Google Scholar 

  28. J. Bardeen, J.N. Cooper, J.R. Schrieffer, Phys. Rev. 106, 162 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  29. N.N. Bogolyubov, Sov. Phys. JETP 7, 41 (1958)

    Google Scholar 

  30. R. de la Madrid, Nucl. Phys. A 940, 297 (2015)

    Article  ADS  Google Scholar 

  31. R.M. Id Betan, R. de la Madrid, Nucl. Phys. A 970 398 (2018)

    Article  ADS  Google Scholar 

  32. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill Book Company, New York, 1971)

    Google Scholar 

  33. V.I. Kukulin, V.M. Krasnolposky, J. Horacek, Theory of Resonances (Kluwer Academic Publishers, Dordrecht, 1988)

    Google Scholar 

  34. R. de la Madrid, G. Garcia-Calderon, J.G. Muga, Czech. J. Phys. 55, 1141 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo M. Id Betan .

Editor information

Editors and Affiliations

Appendix

Appendix

In this section we will deduce the BCS gap equation. As argued in Sect. 2, we use the following expressions for the singular contractions:

$$\displaystyle \begin{aligned} \begin{array}{rcl} \widehat{a^+_{\nu m}(\varepsilon) a^+_{\nu' m'}(\varepsilon)} &\displaystyle =&\displaystyle \delta_{\nu \nu'} \, \delta_{m m'} \, v^2_\nu(\varepsilon) \, g_\nu(\varepsilon) \end{array} \end{aligned} $$
(30)
$$\displaystyle \begin{aligned} \begin{array}{rcl} \widehat{a^+_{\nu m}(\varepsilon) a^+_{\nu' \bar{m}'}(\varepsilon)} &\displaystyle =&\displaystyle \delta_{\nu \nu'} \, \delta_{m,- m'} \, (-)^{j-m} \,u_\nu(\varepsilon) \, v_\nu(\varepsilon)\, g_\nu(\varepsilon) \end{array} \end{aligned} $$
(31)
$$\displaystyle \begin{aligned} \begin{array}{rcl} \widehat{a_{\nu m}(\varepsilon) a_{\nu' \bar{m}'}(\varepsilon)} &\displaystyle =&\displaystyle \delta_{\nu \nu'} \, \delta_{m,- m'} \, (-)^{j-m} \,u_\nu(\varepsilon) \, v_\nu(\varepsilon)\, g_\nu(\varepsilon) \end{array} \end{aligned} $$
(32)

where we have substituted δ(ε − ε) by g ν(ε).

The diagonal part of the BCS Hamiltonian reads,

$$\displaystyle \begin{aligned} \begin{array}{rcl} H_{sp} - \lambda \hat{N} &\displaystyle =&\displaystyle \sum_{jm} (\varepsilon_j - \lambda) v^2_j + \sum_{\nu m} \int d\varepsilon (\varepsilon - \lambda) v^2_\nu(\varepsilon) g(\varepsilon) \\ &\displaystyle &\displaystyle + \sum_{jm} (\varepsilon_j - \lambda) (u^2_j-v^2_j) \alpha^+_{jm} \alpha_{jm} \\ &\displaystyle &\displaystyle + \sum_{\nu m} \int d\varepsilon (\varepsilon - \lambda) \left[ u^2_\nu(\varepsilon)-v^2_\nu(\varepsilon)\right] \alpha^+_{\nu m}(\varepsilon) \alpha_{\nu m}(\varepsilon) \\ &\displaystyle &\displaystyle + \sum_{jm} (\varepsilon_j - \lambda) (-)^{j-m} u_j v_j \left( \alpha^+_{jm} \alpha^+_{j\bar{m}} + hc \right) \\ &\displaystyle &\displaystyle + \sum_{\nu m} \int d\varepsilon (\varepsilon - \lambda) (-)^{j_{\nu}-m} u_\nu(\varepsilon) v_\nu(\varepsilon) \left[ \alpha^+_{\nu m}(\varepsilon) \alpha^+_{\nu \bar{m}}(\varepsilon) + hc \right] \qquad {} \end{array} \end{aligned} $$
(33)

For the pairing interaction we have

$$\displaystyle \begin{aligned} V_P= -\textit{GP}_d^+ P_d -\textit{GP}_d^+ P_c -\textit{GP}_c^+ P_d -\textit{GP}_c^+ P_c \end{aligned} $$
(34)

where \(P_d^+ = \sum _j A^+_j\) and \(P_c^+ = \int _0^\infty d\varepsilon \;A^+(\varepsilon )\). Thus,

$$\displaystyle \begin{aligned} \begin{array}{rcl} -\textit{GP}_d^+ P_d &\displaystyle =&\displaystyle - \frac{\varDelta^2_d}{G} + 2 \varDelta_d \sum_{jm} u_j v_j \alpha^+_{jm} \alpha_{jm} \\ &\displaystyle &\displaystyle - \frac{\varDelta_d}{2} \sum_{jm} (-)^{j-m} (u^2_j-v^2_j) \left( \alpha^+_{jm} \alpha^+_{j\bar{m}} + hc \right) \\ &\displaystyle &\displaystyle - G (\mathrm{terms}\; \mathrm{with}\; \mathrm{four}\; \alpha) \end{array} \end{aligned} $$
(35)
$$\displaystyle \begin{aligned} \begin{array}{rcl} -\textit{GP}_c^+ P_c &\displaystyle =&\displaystyle - \frac{\varDelta^2_c}{G} + 2 \varDelta_c \sum_{\nu m} \int d\varepsilon u_\nu(\varepsilon) v_\nu(\varepsilon) \alpha^+_{\nu m}(\varepsilon) \alpha_{\nu m}(\varepsilon) \\ &\displaystyle &\displaystyle - \frac{\varDelta_c}{2} \sum_{\nu m} \int d\varepsilon (-)^{j_\nu-m} \left[ u^2_\nu(\varepsilon)-v^2_\nu(\varepsilon) \right] \left[ \alpha^+_{\nu m}(\varepsilon) \alpha^+_{\nu \bar{m}}(\varepsilon) + hc \right] \\ &\displaystyle &\displaystyle - G (\mathrm{terms}\; \mathrm{with}\; \mathrm{four}\; \alpha) \end{array} \end{aligned} $$
(36)
$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle -G (P_d^+ P_c + P_c^+ P_d) = -2 \frac{\varDelta_d \varDelta_c}{G} + 2 \varDelta_c \sum_{jm} u_j v_j \alpha^+_{jm} \alpha_{jm} \\ &\displaystyle &\displaystyle \quad + 2 \varDelta_d \sum_{\nu m} \int d\varepsilon u_\nu(\varepsilon) v_\nu(\varepsilon) \alpha^+_{\nu m}(\varepsilon) \alpha_{\nu m}(\varepsilon) \\ &\displaystyle &\displaystyle \quad - \frac{\varDelta_d}{2} \sum_{\nu m} \int d\varepsilon (-)^{j_\nu-m} \left[ u^2_\nu(\varepsilon)-v^2_\nu(\varepsilon)) \right] \left[ \alpha^+_{\nu m}(\varepsilon) \alpha^+_{\nu \bar{m}}(\varepsilon) + hc \right] \\ &\displaystyle &\displaystyle \quad - \frac{\varDelta_c}{2} \sum_{jm} (-)^{j-m} (u^2_j-v^2_j) \left( \alpha^+_{jm} \alpha^+_{j\bar{m}} + hc \right) \\ &\displaystyle &\displaystyle \quad - G (\mathrm{terms}\; \mathrm{with}\; \mathrm{four}\; \alpha) \end{array} \end{aligned} $$
(37)

where we have introduced the discrete Δ d and the continuum Δ c gaps,

$$\displaystyle \begin{aligned} \begin{array}{rcl} \varDelta_d &\displaystyle =&\displaystyle \frac{G}{2} \sum_{jm} u_j v_j \end{array} \end{aligned} $$
(38)
$$\displaystyle \begin{aligned} \begin{array}{rcl} \varDelta_c &\displaystyle =&\displaystyle \frac{G}{2} \sum_{\nu m} \int d\varepsilon u_\nu(\varepsilon) v_\nu(\varepsilon) g_\nu(\varepsilon) \end{array} \end{aligned} $$
(39)

Then, the pairing interaction reads

$$\displaystyle \begin{aligned} \begin{array}{rcl} V_P &\displaystyle =&\displaystyle - \frac{\varDelta^2}{G} + 2 \varDelta \sum_{jm} u_j v_j \alpha^+_{jm} \alpha_{jm} + 2 \varDelta \sum_{\nu m} \int d\varepsilon u_\nu(\varepsilon) v_\nu(\varepsilon) \alpha^+_{\nu m}(\varepsilon) \alpha_{\nu m}(\varepsilon) \\ &\displaystyle &\displaystyle - \frac{\varDelta}{2} \sum_{jm} (-)^{j-m} (u^2_j-v^2_j) \left( \alpha^+_{jm} \alpha^+_{j\bar{m}} + hc \right) \\ &\displaystyle &\displaystyle - \frac{\varDelta}{2} \sum_{\nu m} \int d\varepsilon (-)^{j_\nu-m} \left[ u^2_\nu(\varepsilon)-v^2_\nu(\varepsilon)) \right] \left[ \alpha^+_{\nu m}(\varepsilon) \alpha^+_{\nu \bar{m}}(\varepsilon) + hc \right] \\ &\displaystyle &\displaystyle - G (\mathrm{terms}\; \mathrm{with}\; \mathrm{four}\; \alpha) {} \end{array} \end{aligned} $$
(40)

Notice that the unknown discrete and continuum gap do not appear separately but in the combination Δ = Δ d + Δ c.

By adding Eqs. (33) and (40), we get the expression of the BCS Hamiltonian \(H_{BCS}=H_{sp}+V_P-\lambda \hat {N}\) in terms of the quasi-particle operators. By eliminating the “dangerous” terms [29] that contain \(\alpha ^+_{nm} \alpha ^+_{n\bar {m}} + hc\) with n = j and n = ν(ε), we get the following two equations:

$$\displaystyle \begin{aligned} \begin{array}{rcl} - \frac{\varDelta}{2} (u^2_j-v^2_j) + (\varepsilon_j - \lambda) u_j v_j &\displaystyle =&\displaystyle 0 {} \end{array} \end{aligned} $$
(41)
$$\displaystyle \begin{aligned} \begin{array}{rcl} - \frac{\varDelta}{2} \left[ u^2_\nu(\varepsilon)-v^2_\nu(\varepsilon) \right] + (\varepsilon - \lambda) u_\nu(\varepsilon) v_\nu(\varepsilon) &\displaystyle =&\displaystyle 0 {} \end{array} \end{aligned} $$
(42)

which, together with the normalization conditions \(u^2_j+v^2_j=1\) and \(u^2_\nu (\varepsilon )+v^2_\nu (\varepsilon )=1\), yield

$$\displaystyle \begin{aligned} \begin{array}{rcl} v^2_j &\displaystyle =&\displaystyle \frac{1}{2} \left[ 1 - \frac{(\varepsilon_j - \lambda)} {\sqrt{(\varepsilon_j - \lambda)^2 + \varDelta^2}} \right] {} \end{array} \end{aligned} $$
(43)
$$\displaystyle \begin{aligned} \begin{array}{rcl} v_\nu^2(\varepsilon) &\displaystyle =&\displaystyle \frac{1}{2} \left[ 1 - \frac{(\varepsilon - \lambda)} {\sqrt{(\varepsilon - \lambda)^2 + \varDelta^2}} \right] {} \end{array} \end{aligned} $$
(44)

Eq. (44) shows that the occupation probability in the continuum does not depend on the quantum number ν, i.e., v ν(ε) = v(ε). The coefficients \(u^2_j\) and u 2(ε) are obtained from the normalization condition. Substituting Eqs. (43) and (44) into Eqs. (41) and (42) we get

$$\displaystyle \begin{aligned} \begin{array}{rcl} u_j v_j &\displaystyle =&\displaystyle \frac{\varDelta}{2 \sqrt{(\varepsilon_j - \lambda)^2 + \varDelta^2}} \end{array} \end{aligned} $$
(45)
$$\displaystyle \begin{aligned} \begin{array}{rcl} u(\varepsilon) v(\varepsilon) &\displaystyle =&\displaystyle \frac{\varDelta}{2 \sqrt{(\varepsilon - \lambda)^2 + \varDelta^2}} \end{array} \end{aligned} $$
(46)

which can be used to calculate the gap parameter,

$$\displaystyle \begin{aligned} \begin{array}{rcl} \varDelta &\displaystyle =&\displaystyle \varDelta_d + \varDelta_c \end{array} \end{aligned} $$
(47)
$$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle =&\displaystyle \frac{G}{2} \sum_{jm} u_j v_j + \frac{G}{2} \sum_{\nu m} \int_0^\infty d\varepsilon\; u(\varepsilon) v(\varepsilon) g_\nu(\varepsilon) \end{array} \end{aligned} $$
(48)

The above equation reduces to the so-called gap equation,

$$\displaystyle \begin{aligned} \frac{4}{G}= \sum_{jm} \frac{1}{E_j} + \sum_{\nu m} \int_0^\infty d\varepsilon\; \frac{g_\nu(\varepsilon)}{E(\varepsilon)} \end{aligned} $$
(49)

where we have introduced the quasi-particle energies, \(E_j=\sqrt {(\varepsilon _j - \lambda )^2 + \varDelta ^2}\) and \(E(\varepsilon )=\sqrt {(\varepsilon - \lambda )^2 + \varDelta ^2}\).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Betan, R.M.I. (2019). Real- and Complex-Energy Non-conserving Particle Number Pairing Solution. In: Kuru, Ş., Negro, J., Nieto, L. (eds) Integrability, Supersymmetry and Coherent States. CRM Series in Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-20087-9_9

Download citation

Publish with us

Policies and ethics