Skip to main content

Trace Formulas Applied to the Riemann ζ-Function

  • Chapter
  • First Online:
Integrability, Supersymmetry and Coherent States

Abstract

We use a spectral theory perspective to reconsider properties of the Riemann zeta function. In particular, new integral representations are derived and used to present its value at odd positive integers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The condition \(\operatorname{Re}(2n + 2z) > 1\) takes effect only for n = 0, that is, we assume \((1/2) < \operatorname{Re}(z) < 1\) if n = 0.

  2. 2.

    The second formula is mentioned since it appears to be advantageous (cf. (2.32)–(2.34)) to substitute t = s 2 after one performs the n differentiations w.r.t. t in the 1st line of (2.52).

References

  1. R. Apéry, Irrationalité de ζ(2) et ζ(3). Astérisque 61, 11–13 (1979)

    MathSciNet  MATH  Google Scholar 

  2. F. Beukers, A note on the irrationality of ζ(2) and ζ(3). Bull. Lond. Math. Soc. 11, 268–272 (1979)

    Article  Google Scholar 

  3. M. Bordag, G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Advances in the Casimir Effect (Oxford Science Publications, Oxford, 2009)

    Book  Google Scholar 

  4. A.A. Bytsenko, G. Cognola, L. Vanzo, S. Zerbini, Quantum fields and extended objects in space-times with constant curvature spatial section. Phys. Rep. 266, 1–126 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  5. S. Coleman, Aspects of Symmetry: Selected Lectures of Sidney Coleman (Cambridge University Press, Cambridge, 1985)

    Book  Google Scholar 

  6. L.A. Dikii, The zeta function of an ordinary differential equation on a finite interval. Izv. Akad. Nauk SSSR Ser. Mat. 19(4), 187–200 (1955)

    MathSciNet  Google Scholar 

  7. L.A. Dikii, Trace formulas for Sturm–Liouville differential operators. Am. Math. Soc. Transl. (2) 18, 81–115 (1961)

    Google Scholar 

  8. J.S. Dowker, R. Critchley, Effective Lagrangian and energy momentum tensor in de Sitter space. Phys. Rev. D13, 3224–3232 (1976)

    ADS  Google Scholar 

  9. R.J. Dwilewicz, J. Mináč, Values of the Riemann zeta function at integers. MATerials MATemàtics 2009(6), 26 pp

    Google Scholar 

  10. E. Elizalde, Ten Physical Applications of Spectral Zeta Functions. Lecture Notes in Physics, vol. 855 (Springer, Berlin, 2012)

    Google Scholar 

  11. G. Esposito, A.Y. Kamenshchik, G. Pollifrone, Euclidean Quantum Gravity on Manifolds with Boundary. Fundamental Theories of Physics, vol. 85 (Kluwer, Dordrecht, 1997)

    Google Scholar 

  12. S.R. Finch, Mathematical Constants. Encyclopedia of Mathematics and Its Applications, vol. 94 (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  13. F. Gesztesy, K. Kirsten, Effective Computation of Traces, Determinants, and ζ-Functions for Sturm–Liouville Operators. J. Funct. Anal. 276, 520–562 (2019)

    Article  MathSciNet  Google Scholar 

  14. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, corrected and enlarged edition, prepared by A. Jeffrey, (Academic, San Diego, 1980)

    Google Scholar 

  15. M. Haase, The Functional Calculus for Sectorial Operators. Operator Theory: Advances and Applications, vol. 169 (Birkhäuser, Basel, 2006)

    Google Scholar 

  16. S.W. Hawking, Zeta function regularization of path integrals in curved space-time. Commun. Math. Phys. 55, 133–148 (1977)

    Article  ADS  Google Scholar 

  17. P. Henrici, Applied and Computational Complex Analysis, Vol. I: Power Series–Integration–Conformal Mapping–Location of Zeros, reprinted 1988 (Wiley, New York, 1974)

    Google Scholar 

  18. K. Kirsten, Spectral Functions in Mathematics and Physics (Chapman&Hall/CRC, Boca Raton, 2002)

    Google Scholar 

  19. K. Kirsten, A.J. McKane, Functional determinants by contour integration methods. Ann. Phys. 308, 502–527 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  20. K. Kirsten, A.J. McKane, Functional determinants for general Sturm–Liouville problems. J. Phys. A 37, 4649–4670 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  21. M.S. Klamkin (ed.), Problems in Applied Mathematics: Selections from SIAM Review (SIAM, Philadelphia, 1990)

    MATH  Google Scholar 

  22. E. Lindelöf, Le Calcul des Résides et ses Applications a la Théorie des Fonctions (Chelsea, New York, 1947)

    Google Scholar 

  23. W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics. Grundlehren, vol. 52, 3rd edn. (Springer, Berlin, 1966)

    Google Scholar 

  24. M.S. Milgram, Integral and series representations of Riemann’s zeta function and Dirichlet’s eta function and a medley of related results. J. Math. 2013, article ID 181724, 17p.

    Google Scholar 

  25. K.A. Milton, The Casimir Effect: Physical Manifestations of Zero-Point Energy (World Scientific, River Edge, 2001)

    Book  Google Scholar 

  26. D.B. Ray, I.M. Singer, R-Torsion and the Laplacian on Riemannian Manifolds. Adv. Math. 7, 145–210 (1971)

    Article  MathSciNet  Google Scholar 

  27. S.K. Sekatskii, Novel integral representations of the Riemann zeta-function and Dirichlet eta-function, closed expressions for Laurent series expansions of powers of trigonometric functions and digamma function, and summation rules, arXiv:1606.02150

    Google Scholar 

  28. H.M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions (Kluwer, Dordrecht, 2001)

    Book  Google Scholar 

  29. A. van der Poorten, A proof that Euler missed …. Apéry’s proof of the irrationality of ζ(3). An informal report. Math. Intell. 1(4), 195–203 (1979)

    Google Scholar 

  30. E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, 4th edn., reprinted 1986 (Cambridge University Press, Cambridge, 1927)

    Google Scholar 

  31. Wikipedia: Apery’s constant, https://en.wikipedia.org/wiki/Apery's_constant

  32. Wikipedia: Riemann zeta function, https://en.wikipedia.org/wiki/Riemann_zeta_function

  33. WolframMathWorld: Apery’s constant, http://mathworld.wolfram.com/AperysConstant.html

  34. WolframMathWorld: Riemann Zeta Function, http://mathworld.wolfram.com/RiemannZetaFunction.html

  35. W. Zudilin, An elementary proof of Apéry’s theorem, arXiv:0202159

    Google Scholar 

Download references

Acknowledgements

We are indebted to the anonymous referee for kindly bringing references [24] and [27] to our attention.

Klaus Kirsten was supported by the Baylor University Summer Sabbatical and Research Leave Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Kirsten .

Editor information

Editors and Affiliations

Appendix: Basic Formulas for the Riemann ζ-Function

Appendix: Basic Formulas for the Riemann ζ-Function

We present a number of formulas for ζ(z) and special values of ζ(⋅). It goes without saying that no such collection can ever attempt at any degree of completeness, and certainly our compilation of formulas is no exception in this context.

Definition

$$\displaystyle \begin{aligned} \zeta(z) &= \sum_{k \in {\mathbb{N}}} k^{-z}, \quad z \in {\mathbb{C}}, \, \operatorname{Re}(z) > 1 {} \end{aligned} $$
(A.1)
(A.2)
(A.3)

Functional Equation

$$\displaystyle \begin{aligned} \zeta(z) = 2^z \pi^{z-1} \sin{}(\pi z/2) \varGamma(1 - z) \zeta(1 - z), \quad z \in {\mathbb{C}}, \, \operatorname{Re}(z) < 0. \end{aligned} $$
(A.4)

Alternative Formulas

$$\displaystyle \begin{aligned} \zeta(z) &= \varGamma(z)^{-1} \int_0^{\infty} dt \, \frac{t^{z - 1}}{e^t - 1}, \quad z \in {\mathbb{C}}, \, \operatorname{Re}(z) > 1 \end{aligned} $$
(A.5)
(A.6)
$$\displaystyle \begin{aligned} &= \varGamma(z)^{-1} [1 - 2^{1 - z}]^{-1} \int_0^{\infty} dt \, \frac{t^{z - 1}}{e^{t} + 1}, \quad z \in {\mathbb{C}}, \, \operatorname{Re}(z) > 0 \end{aligned} $$
(A.7)
(A.8)

where

$$\displaystyle \begin{aligned} \varGamma(z) = \int_0^{\infty} dt \, t^{z - 1} e^{- t}, \quad z \in {\mathbb{C}}, \, \operatorname{Re}(z) > 0. \end{aligned} $$
(A.9)

In addition,

(A.10)
(A.11)
$$\displaystyle \begin{aligned} &= \pi^{z/2} \varGamma(z/2)^{-1} \int_0^{\infty} dt \, t^{(z/2) - 1} \sum_{k \in {\mathbb{N}}} e^{- k^2 \pi t}, \end{aligned} $$
(A.12)

and

(A.13)
$$\displaystyle \begin{aligned} &= \frac{2^{z - 1}}{z - 1} - 2^z \int_0^{\infty} dt \, \frac{\sin{}(z \arctan(t))}{(1 + t^2)^{z/2} (e^{\pi t} + 1)}, \quad z \in {\mathbb{C}}\backslash\{1\}, \end{aligned} $$
(A.14)
(A.15)
(A.16)
(A.17)
(A.18)
$$\displaystyle \begin{aligned} &= \varGamma(z+1)^{-1} 4^{-1} (2a)^{z + 1} \big[1 - 2^{1 - z}\big]^{-1} \int_0^{\infty} dt \, \frac{t^{z}}{[\cosh(at)]^2}, \end{aligned} $$
(A.19)
(A.20)
(A.21)
(A.22)
(A.23)
(A.24)
(A.25)
(A.26)
(A.27)
(A.28)
(A.29)

Specific Values

$$\displaystyle \begin{aligned} \zeta (2n) = \frac{(-1)^{n + 1}(2 \pi)^{2n}B_{2n} }{2 (2n)!}, \quad n \in {\mathbb{N}}_0, {} \end{aligned} $$
(A.30)

where B m are the Bernoulli numbers generated, for instance, by

$$\displaystyle \begin{aligned} \frac{w}{e^{w} - 1} = \sum_{m \in {\mathbb{N}}_0} B_m \frac{w^m}{m!}, \quad w \in {\mathbb{C}}, \, |w| < 2 \pi, \end{aligned} $$
(A.31)

in particular,

$$\displaystyle \begin{aligned} & B_0 = 1, B_1 = - 1/2, \; B_2 = 1/6, \; B_3 = 0, B_4 = - 1/30, B_5 = 0, B_6 = 1/42, \text{etc.,} \end{aligned} $$
(A.32)
$$\displaystyle \begin{aligned} & B_{2k+1} = 0, \; k \in {\mathbb{N}}. {} \end{aligned} $$
(A.33)

Moreover, one has the generating functions for ζ(2n),

$$\displaystyle \begin{aligned} - (\pi z/2) \cot{}(\pi z) &= \sum_{n \in {\mathbb{N}}_0} \zeta(2n) z^{2n}, \quad |z| < 1, \; \zeta(0) = -1/2, {} \end{aligned} $$
(A.34)
$$\displaystyle \begin{aligned} - (\pi z/2) \coth(\pi z) &= \sum_{n \in {\mathbb{N}}_0} (-1)^n \zeta(2n) z^{2n}, \quad |z| < 1, \; \zeta(0) = -1/2, {} \end{aligned} $$
(A.35)

and [32]

$$\displaystyle \begin{aligned} (n!/6)[\zeta(n - 2) - 3 \zeta(n - 1) + 2 \zeta(n)] = \int_0^{\infty} dt \, \frac{t^n e^t}{(e^t - 1)^4}, \quad n \in {\mathbb{N}}, \, n \geq 4. \end{aligned} $$
(A.36)

Choosing k = 2n, \(n \in {\mathbb {N}}\), even, employing (A.30) for ζ(2n), ζ(2n − 2), yields a formula for ζ(2n − 1). Moreover,

$$\displaystyle \begin{aligned} \zeta(2n+1) &= \frac{1}{(2n)!} \int_0^{\infty} dt \, \frac{t^{2n}}{e^t - 1}, \quad n \in {\mathbb{N}} \end{aligned} $$
(A.37)
(A.38)

where B m(⋅) are the Bernoulli polynomials,

$$\displaystyle \begin{aligned} B_m(z) = \sum_{j = 0}^m \begin{pmatrix} m \\ j \end{pmatrix} B_j z^{m - j}, \quad t \in {\mathbb{C}}, \end{aligned} $$
(A.39)

generated, for instance, by

$$\displaystyle \begin{aligned} \frac{w e^{z w}}{e^{w} - 1} = \sum_{m \in {\mathbb{N}}_0} B_m(z) \frac{w^m}{m!}, \quad w \in {\mathbb{C}}, \, |w| < 2 \pi. \end{aligned} $$
(A.40)

Explicitly,

$$\displaystyle \begin{aligned}& \begin{aligned} & B_0(x) = 1, \; B_1(x) = x - (1/2), \; B_2(x) = x^2 - x + (1/6), \\ & B_3(x) = x^3 - (3/2)x^2 + (1/2)x, \; \text{etc.,} {} \end{aligned} \end{aligned} $$
(A.41)
$$\displaystyle \begin{aligned} & B_n(0) = B_n, \; n \in {\mathbb{N}}, \quad B_1(1) = - B_1 = 1/2, \; B_n(1) = B_n, \; n \in {\mathbb{N}}_0 \backslash \{1\}, {} \end{aligned} $$
(A.42)
$$\displaystyle \begin{aligned} & B_n^{\prime}(x) = n B_{n-1}(x), \quad n \in {\mathbb{N}}, \; x \in {\mathbb{R}}. {} \end{aligned} $$
(A.43)

In addition, for \(n \in {\mathbb {N}}\),

(A.44)
(A.45)
(A.46)
(A.47)

Just for curiosity,

$$\displaystyle \begin{aligned} \zeta(3) = 1.2020569032 \ldots.. \end{aligned} $$
(A.48)

Apery [1] proved in 1978 that ζ(3) is irrational (see also Beukers [2], van der Poorten [29], Zudilin [35], and [31], [33]).

Moreover,

(A.49)
(A.50)
(A.51)
(A.52)
(A.53)
(A.54)
(A.55)
(A.56)
(A.57)
(A.58)
(A.59)
(A.60)
(A.61)
(A.62)
$$\displaystyle \begin{aligned} \zeta(3) &= -\dfrac{2}{7} \pi^2 \operatorname{ln}(2) - \dfrac{16}{7} \, \int_0^1 dt \, \dfrac{\mathrm{arctanh}(t) \operatorname{ln} (t)}{t(1-t^2)} {} \end{aligned} $$
(A.63)
$$\displaystyle \begin{aligned} &= - \dfrac{4}{3} \, \int_0^1 dt \, \dfrac{\operatorname{ln}(t) \operatorname{ln}(1+t)}{t} \end{aligned} $$
(A.64)
$$\displaystyle \begin{aligned} & = - 8 \, \int_0^1 dt \, \dfrac{\operatorname{ln}(t) \operatorname{ln}(1+t)}{1+t} \end{aligned} $$
(A.65)
$$\displaystyle \begin{aligned} &= \int_0^1 dt \, \dfrac{\operatorname{ln}(t) \operatorname{ln}(1-t)}{1-t} = \int_0^1 dt \, \dfrac{\operatorname{ln}(t) \operatorname{ln}(1-t)}{t} \end{aligned} $$
(A.66)
$$\displaystyle \begin{aligned} &= \dfrac{1}{4} \pi^2 \operatorname{ln}(2) + \int_0^1 dt \, \dfrac{\operatorname{ln}(t) \operatorname{ln}(1+t)}{1-t} \end{aligned} $$
(A.67)
$$\displaystyle \begin{aligned} &= \dfrac{2}{13} \pi^2 \operatorname{ln}(2) + \dfrac{8}{13} \, \int_0^1 dt \, \dfrac{\operatorname{ln}(t) \operatorname{ln}(1-t)}{1+t} \end{aligned} $$
(A.68)
$$\displaystyle \begin{aligned} &= \dfrac{2}{7} \, \int_0^{\pi/2} dt \, \dfrac{t (\pi - t)}{\sin{}(t)}. {} \end{aligned} $$
(A.69)

Formulas (A.63)–(A.69) were provided by Glasser and Ruehr and can be found in [21, Problem 80-13]. Finally, we also recall,

(A.70)
$$\displaystyle \begin{aligned} &= \dfrac{6}{7} + \dfrac{2}{7} \,\int_0^\infty dt \, \dfrac{\sin{}(3 \arctan(2t))}{[(1/4) + t^2]^{3/2}} \, \dfrac{1}{e^{2\pi t} - 1} {} \end{aligned} $$
(A.71)
$$\displaystyle \begin{aligned} &= \dfrac{6}{7} + \dfrac{8}{7} \,\int_0^\infty dt \, \dfrac{\sin{}(3 \arctan(t))}{(1 + t^2)^{3/2}} \, \dfrac{1}{e^{\pi t} - 1} {} \end{aligned} $$
(A.72)
$$\displaystyle \begin{aligned} &= 2 - 8 \,\int_0^\infty dt \, \dfrac{\sin{}(3 \arctan(t))}{(1 + t^2)^{3/2}} \, \dfrac{1}{e^{\pi t} + 1} {} \end{aligned} $$
(A.73)
$$\displaystyle \begin{aligned} &= 1 + 2 \,\int_0^\infty dt \, \dfrac{\sin{}(3 \arctan(t))}{(1 + t^2)^{3/2}} \, \dfrac{1}{e^{2\pi t} - 1}. {} \end{aligned} $$
(A.74)

Formulas (A.71)–(A.73) are due to Jensen (1895) and are special cases of results to be found in [30, p. 279] (cf. (A.16), (A.29)); finally, (A.74) is a consequence of (A.72) and (A.73).

For more on ζ(3) see also [12, p. 42–45].

For a wealth of additional formulas, going beyond what is recorded in this appendix, we also refer to [24] and [27].

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashbaugh, M.S., Gesztesy, F., Hermi, L., Kirsten, K., Littlejohn, L., Tossounian, H. (2019). Trace Formulas Applied to the Riemann ζ-Function. In: Kuru, Ş., Negro, J., Nieto, L. (eds) Integrability, Supersymmetry and Coherent States. CRM Series in Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-20087-9_8

Download citation

Publish with us

Policies and ethics