Skip to main content

On the Equivalence Between Type I Liouville Dynamical Systems in the Plane and the Sphere

  • Chapter
  • First Online:
Integrability, Supersymmetry and Coherent States

Abstract

Separable Hamiltonian systems either in sphero-conical coordinates on an S 2 sphere or in elliptic coordinates on a \({\mathbb R}^2\) plane are described in a unified way. A back and forth route connecting these Liouville Type I separable systems is unveiled. It is shown how the gnomonic projection and its inverse map allow us to pass from a Liouville Type I separable system with a spherical configuration space to its Liouville Type I partners where the configuration space is a plane and back. Several selected spherical separable systems and their planar cousins are discussed in a classical context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Liouville, Mémoire sur l’integration des équations différentielles du mouvement d’un nombre quelconque de points matériels. J. Math. Pures et Appl. 14, 257–299 (1849)

    Google Scholar 

  2. G. Morera, Sulla separazione delle variabili nelle equazioni del moto di un punto materiale su una superficie Atti. Sci. di Torino 16, 276–295 (1881)

    MATH  Google Scholar 

  3. A.M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras (Birkhäuser, Basel 1990)

    Google Scholar 

  4. M.A. Gonzalez Leon, J. Mateos Guilarte, M. de la Torre Mayado, Orbits in the problem of two fixed centers on the sphere. Regul. Chaotic Dyn. 22, 520–542 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. H.W. Killing, Die Mechanik in den nicht-euklidischen Raumformen. J. Reine Angew. Math. 98(1), 1–48 (1885)

    MathSciNet  MATH  Google Scholar 

  6. V.V. Kozlov, A.O. Harin, Kepler’s problem in constant curvature spaces. Celest. Mech. Dyn. Astr. 54(4), 393–399 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A.V. Borisov, I.S. Mamaev, Relations between integrable systems in plane and curved spaces. Celest. Mech. Dyn. Astr. 99(4), 253–260 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. A. Albouy, The underlying geometry of the fixed centers problems, in Topological Methods, Variational Methods and Their Applications, ed. by H. Brezis, K.C. Chang, S.J. Li, P. Rabinowitz (World Scientific, Singapore, 2003), pp. 11–21

    Chapter  Google Scholar 

  9. A. Albouy, T. Stuchi, Generalizing the classical fixed-centres problem in a non-Hamiltonian way. J. Phys. A 37, 9109–9123 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. P. Appell, De l’homographie en mécanique. Am. J. Math. 12(1), 103–114 (1890)

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Appell, Sur les lois de forces centrales faisant décrire à leur point d’application une conique quelles que soient les conditions initiales. Am. J. Math. 13(2), 153–158 (1891)

    Article  MathSciNet  MATH  Google Scholar 

  12. P.W. Higgs, Dynamical symmetry in a spherical geometry I. J. Phys. A: Math. Gen. 12(3), 309–323 (1979). H.I. Leemon, Dynamical symmetry in a spherical geometry II. J. Phys. A: Math. Gen. 12(4), 489–501 (1979)

    Google Scholar 

  13. A. Albouy, Projective dynamics and classical gravitation. Regul. Chaotic Dyn. 13(6), 525–542 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. A. Albouy, There is a projective dynamics. Eur. Math. Soc. Newsl. 89, 37–43 (2013)

    MathSciNet  MATH  Google Scholar 

  15. A. Albouy, Projective dynamics and first integrals. Regul. Chaotic Dyn. 20(3), 247–276 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. A.V. Borisov, I.S. Mamaev, I.A. Bizyaev, The spatial problem of 2 bodies on a sphere. Reduction and stochasticity. Regul. Chaotic Dyn. 21(5), 556–580 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. C. Neumann, De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur. J. Rein Angew. Math. 56, 46–63 (1859)

    Article  MathSciNet  Google Scholar 

  18. B.A. Dubrovine, Theta functions and non-linear equations. Russ. Math. Surv. 36(2), 11–92 (1981)

    Article  Google Scholar 

  19. V.Z. Enolski, E. Hackmann, V. Kagramanova, J. Kung, C. L\(\ddot {\mathrm {a}}\)merzahl, Inversion of hyperelliptic integrals of arbitrary genus with applications to particle motion in general relativity. J. Geom. Phys. 61, 899–921 (2011)

    Google Scholar 

  20. R. Garnier, Sur une classe de systems differentielles abelians deduits de la theorie de equations lineaires. Rend. Circ. Mat. Palermo 43, 155–191 (1919)

    Article  MATH  Google Scholar 

  21. O. Babelon, M. Talon, Separation of variables for the classical and quantum Neumann model. Nucl. Phys. B 379, 321–339 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Gadella, J. Negro, L.M. Nieto, G.P. Pronko, Two charged particles in the plane under a constant perpendicular magnetic field. Int. J. Theor. Phys. 50, 2019–2028 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. M.A. Gonzalez Leon, J. Mateos Guilarte, M. de la Torre Mayado, Elementary solutions of the quantum planar two center problem. Europhys. Lett. 114, 30007 (2016)

    Article  ADS  Google Scholar 

  24. A. Alonso Izquierdo, M.A. Gonzalez Leon, J. Mateos Guilarte, Kinks in a non-linear massive sigma model. Phys. Rev. Lett. 101, 131602 (2008). BPS and non BPS kinks in a massive non-linear S 2-sigma model. Phys. Rev. D 79, 125003 (2009)

    Google Scholar 

  25. A. Alonso Izquierdo, M.A. Gonzalez Leon, J. Mateos Guilarte, M. de la Torre Mayado, On domain walls in a Ginzburg-Landau non-linear S2-sigma model. J. High Energy Phys. 2010(8), 1–29 (2010)

    Article  MATH  Google Scholar 

  26. A. Alonso Izquierdo, A. Balseyro Sebastian, M.A. Gonzalez Leon, Domain walls in a non-linear \(\mathbb {S}^2\)-sigma model with homogeneous quartic polynomial potential. J. High Energy Phys. 2018(11), 1–23 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors thank the Spanish Ministerio de Economía y Competitividad (MINECO) for financial support under grant MTM2014-57129-C2-1-P and the Junta de Castilla y León (Projects VA057U16, VA137G18, and BU229P18). We gratefully acknowledge the constructive comments on the paper offered by the anonymous referee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A.  González León .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

León, M.A. ., Guilarte, J.M., Mayado, M.d.l.T. (2019). On the Equivalence Between Type I Liouville Dynamical Systems in the Plane and the Sphere. In: Kuru, Ş., Negro, J., Nieto, L. (eds) Integrability, Supersymmetry and Coherent States. CRM Series in Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-20087-9_16

Download citation

Publish with us

Policies and ethics