Skip to main content

The Lippmann–Schwinger Formula and One Dimensional Models with Dirac Delta Interactions

  • Chapter
  • First Online:
Book cover Integrability, Supersymmetry and Coherent States

Part of the book series: CRM Series in Mathematical Physics ((CRM))

  • 563 Accesses

Abstract

We show how a proper use of the Lippmann–Schwinger equation simplifies the calculations to obtain scattering states for one dimensional systems perturbed by N Dirac delta equations. Here, we consider two situations. In the former, attractive Dirac deltas perturbed the free one dimensional Schrödinger Hamiltonian. We obtain explicit expressions for scattering and Gamow states. For completeness, we show that the method to obtain bound states use comparable formulas, although not based on the Lippmann–Schwinger equation. Then, the attractive N deltas perturbed the one dimensional Salpeter equation. We also obtain explicit expressions for the scattering wave functions. Here, we need regularisation techniques that we implement via heat kernel regularisation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As a matter of fact, this also follows because Φ(E) appears in the denominator of the resolvent of the total Hamiltonian H.

References

  1. S. Albeverio, F. Gesztesy, R. Høeg-Krohn, H. Holden, Solvable Models in Quantum Mechanics (AMS Chelsea Series, Providence RI, 2004)

    Google Scholar 

  2. Y.N. Demkov, V.N. Ostrovskii, Zero-range Potentials and Their Applications in Atomic Physics (Plenum, New York, 1988)

    Book  Google Scholar 

  3. M. Belloni, R.W. Robinett, The infinite well and Dirac delta function potentials as pedagogical, mathematical and physical models in quantum mechanics. Phys. Rep. 540, 25–122 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Albeverio, P. Kurasov, Singular Perturbations of Differential Operators Solvable Schrödinger-type Operators (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  5. M.H. Al-Hashimi, A.M. Shalaby, U.-J.Wiese, Asymptotic freedom, dimensional transmutation, and an infrared conformal fixed point for the δ-function potential in one-dimensional relativistic quantum mechanics. Phys. Rev. D 89, 125023 (2014)

    Article  ADS  Google Scholar 

  6. F. Erman, M. Gadella, H. Uncu, One-dimensional semirelativistic Hamiltonian with multiple Dirac delta potentials. Phys. Rev. D 95, 045004 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Calçada, J.T. Lunardi, L.A. Manzoni, W. Monteiro, Distributional approach to point interactions in one-dimensional quantum mechanics. Front. Phys. 2, 23 (2014)

    Google Scholar 

  8. F. Erman, M. Gadella, S. Tunalı, H. Uncu, A singular one-dimensional bound state problem and its degeneracies. Eur. Phys. J. Plus 132, 352 (2017)

    Article  Google Scholar 

  9. F. Erman, M. Gadella, H. Uncu, On scattering from the one dimensional multiple Dirac delta potentials. Eur. J. Phys. 39, 035403 (2018)

    Article  Google Scholar 

  10. R. de L. Kronig, W.G. Penney, Quantum mechanics of electrons in crystal lattices. Proc. R. Soc. A 130, 499 (1931)

    Google Scholar 

  11. C. Kittel, Introduction to Solid State Physics 8th edn. (Wiley, New York, 2005)

    MATH  Google Scholar 

  12. I.R. Lapidus, Resonance scattering from a double δ-function potential. Am. J. Phys. 50, 663–664 (1982)

    Article  ADS  Google Scholar 

  13. P. Senn, Threshold anomalies in one dimensional scattering. Am. J. Phys. 56, 916–921 (1988)

    Article  ADS  Google Scholar 

  14. P.R. Berman, Transmission resonances and Bloch states for a periodic array of delta function potentials. Am. J. Phys. 81, 190–201 (2013)

    Article  ADS  Google Scholar 

  15. S.H. Patil, Quadrupolar, triple δ-function potential in one dimension. Eur. J. Phys. 629–640 (2009)

    Google Scholar 

  16. V.E. Barlette, M.M. Leite, S.K. Adhikari, Integral equations of scattering in one dimension. Am. J. Phys. 69, 1010–1013 (2001)

    Article  ADS  Google Scholar 

  17. D. Lessie, J. Spadaro, One dimensional multiple scattering in quantum mechanics. Am. J. Phys. 54, 909–913 (1986)

    Article  ADS  Google Scholar 

  18. J.J. Alvarez, M. Gadella, L.M. Nieto, A study of resonances in a one dimensional model with singular Hamiltonian and mass jump. Int. J. Theor. Phys. 50, 2161–2169 (2011)

    Article  MathSciNet  Google Scholar 

  19. J.J. Alvarez, M. Gadella, L.P. Lara, F.H. Maldonado-Villamizar, Unstable quantum oscillator with point interactions: Maverick resonances, antibound states and other surprises. Phys. Lett. A 377, 2510–2519 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  20. A. Bohm, in The Rigged Hilbert Space and Quantum Mechanics. Springer Lecture Notes in Physics, vol. 78 (Springer, New York, 1978)

    Google Scholar 

  21. J.E. Roberts, Rigged Hilbert spaces in quantum mechanics. Commun. Math. Phys. 3, 98–119 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  22. J.P. Antoine, Dirac formalism and symmetry problems in quantum mechanics. I. General formalism. J. Math. Phys. 10, 53–69 (1969)

    ADS  MATH  Google Scholar 

  23. O. Melsheimer, Rigged Hilbert space formalism as an extended mathematical formalism for quantum systems. J. Math. Phys. 15, 902–916 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Gadella, F. Gómez, On the mathematical basis of the Dirac formulation of quantum mechanics. Int. J. Theor. Phys. 42, 2225–2254 (2003)

    Article  MathSciNet  Google Scholar 

  25. A. Bohm, Quantum Mechanics. Foundations and Applications (Springer, Berlin, New York, 2002)

    Google Scholar 

  26. M.C. Fischer, B. Gutiérrez-Medina, M.G. Raizen, Observation of the quantum Zeno and anti-Zeno effects in an unstable system. Phys. Rev. Lett. 87, 40402 (2001)

    Article  ADS  Google Scholar 

  27. C. Rothe, S.L. Hintschich, A.P. Monkman, Violation of the exponential-decay law at long times. Phys. Rev. Lett. 96, 163601 (2006)

    Article  ADS  Google Scholar 

  28. A. Bohm, Resonance poles and Gamow vectors in the rigged Hilbert space formulation of quantum mechanics. J. Math. Phys. 22 (12), 2813–2823 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Bohm, M. Gadella, in Dirac Kets, Gamow Vectors and Gelfand Triplets. Springer Lecture Notes in Physics, vol. 348 (Springer, Berlin, 1989)

    Google Scholar 

  30. O. Civitarese, M. Gadella, Physical and mathematical aspects of Gamow states. Phys. Rep. 396, 41–113 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  31. O. Civitarese, M. Gadella, Gamow states as solutions of a modified Lippmann–Schwinger equation. Int. J. Mod. Phys. E 25, 1650075 (2016)

    Article  ADS  Google Scholar 

  32. M. Reed, B. Simon, Analysis of Operators (Academic, New York, 1978), p. 55

    Google Scholar 

  33. M. Gadella, F. Gómez, The Lippmann–Schwinger equations in the rigged Hilbert space. J. Phys. A: Math. Gen. 35, 8505–8511 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  34. T. Berggren, Expectation value of an operator in a resonant state. Phys. Lett. B 373, 1–4 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  35. O. Civitarese, M. Gadella, R. Id Betan, On the mean value of the energy for resonance states. Nucl. Phys. A 660, 255–266 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We dedicate this paper to Professor Véronique Hussin for her contributions to science and her friendship. The present work has been fully financed by TUBITAK from Turkey under the “2221 - Visiting Scientist Fellowship Programme”. We are very grateful to TUBITAK for this support. We also acknowledge Osman Teoman Turgut for clarifying discussions and his interest in the present research. This work was also sponsored by the Ministerio de Economía y Competitividad of Spain (Project No. MTM2014-57129-C2-1-P with EU-FEDER support) and the Junta de Castilla y León (Projects VA057U16, VA137G18 and BU229P18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Gadella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erman, F., Gadella, M., Uncu, H. (2019). The Lippmann–Schwinger Formula and One Dimensional Models with Dirac Delta Interactions. In: Kuru, Ş., Negro, J., Nieto, L. (eds) Integrability, Supersymmetry and Coherent States. CRM Series in Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-20087-9_13

Download citation

Publish with us

Policies and ethics