Skip to main content

Jacobi Polynomials as su(2, 2) Unitary Irreducible Representation

  • Chapter
  • First Online:
Integrability, Supersymmetry and Coherent States

Abstract

An infinite-dimensional irreducible representation of su(2, 2) is explicitly constructed in terms of ladder operators for the Jacobi polynomials \(J_{n}^{({\alpha },\beta )}(x)\) and the Wigner d j-matrices where the integer and half-integer spins j := n + (α + β)∕2 are considered together. The 15 generators of this irreducible representation are realized in terms of zero or first order differential operators and the algebraic and analytical structure of operators of physical interest discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Berry, Why are special functions special? Phys. Today 54, 11 (2001)

    Article  Google Scholar 

  2. G.E. Andrews, R. Askey, R. Roy, Special Functions (Cambridge University Press, Cambridge, 1999)

    Book  Google Scholar 

  3. G. Heckman, H. Schlichtkrull, Harmonic Analysis and Special Functions on Symmetric Spaces (Academic, New York, 1994)

    MATH  Google Scholar 

  4. R. Koekoek, P.A. Lesky, R.F. Swarttouw, Hypergeometric Orthogonal Polynomials and Their q-Analogues (Springer, Berlin, 2010) (and references therein)

    Google Scholar 

  5. E.I. Jafarov, J. Van der Jeugt, A finite oscillator model related to \(\mathfrak {sl}(2|1)\). J. Phys. A: Math. Theor. 45 275301 (2012). Discrete series representations for \(\mathfrak {sl}(2|1)\), Meixner polynomials and oscillator models, J. Phys. A: Math. Theor. 45, 485201 (2012); The oscillator model for the Lie superalgebra \(\mathfrak {sh}(2|2)\) and Charlier polynomials, J. Math. Phys. 54, 103506 (2013)

    Google Scholar 

  6. J. Van der Jeugt, Finite oscillator models described by the Lie superalgebra sl(2|1), in Symmetries and Groups in Contemporary Physics, ed. by C. Bai, J.-P. Gazeau, M.-L. Ge. Nankai Series in Pure, Applied Mathematics and Theoretical Physics, vol. 11 (World Scientific, Singapore, 2013), p. 301

    Google Scholar 

  7. L. Vinet, A. Zhedanov, A “missing” family of classical orthogonal polynomials. J. Phys. A: Math. Theor. 44, 085201 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. V.X. Genest, L. Vinet, A. Zhedanov, d-Orthogonal polynomials and su(2). J. Math. Anal. Appl. 390, 472 (2012)

    Google Scholar 

  9. A. Zaghouani, Some basic d-orthogonal polynomials sets. Georgian Math. J. 12, 583 (2005)

    MathSciNet  MATH  Google Scholar 

  10. I. Lamiri, A. Ouni, d-Orthogonality of Humbert and Jacobi type polynomials. J. Math. Anal. Appl. 341, 24 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. P. Basseilhac, X. Martin, L. Vinet, A. Zhedanov, Little and big q-Jacobi polynomials and the Askey-Wilson algebra (2018). arXiv:1806.02656v2

    Google Scholar 

  12. R. Floreanini, L. Vinet, Quantum algebras and q-special functions. Ann. Phys. 221, 53 (1993); On the quantum group and quantum algebra approach to q-special functions, Lett. Math. Phys. 27, 179 (1993)

    Google Scholar 

  13. T.H. Koornwinder, q-special functions, a tutorial, in Representations of Lie Groups and Quantum Groups, ed. by V. Baldoni, M.A. Picardello (Longman Scientific and Technical, New York, 1994), pp. 46–128

    MATH  Google Scholar 

  14. D. Gómez-Ullate, N. Kamran, R. Milson, An extended class of orthogonal polynomials defined by a Sturm-Liouville problem. J. Math. Anal. Appl. 359, 352 (2009).

    Article  MathSciNet  Google Scholar 

  15. A.J. Durán, Constructing bispectral dual Hahn polynomials. J. Approx. Theory 189, 1–28 (2015)

    Article  MathSciNet  Google Scholar 

  16. E.P. Wigner, The Application of Group Theory to the Special Functions of Mathematical Physics (Princeton University Press, Princeton, 1955)

    Google Scholar 

  17. J.D. Talman, Special Functions: A Group Theoretic Approach (Benjamin, New York, 1968)

    MATH  Google Scholar 

  18. W. Miller Jr., Lie Theory and Special Functions (Academic, New York, 1968)

    MATH  Google Scholar 

  19. N.J. Vilenkin, Special Functions and the Theory of Group Representations (American Mathematical Society, Providence, 1968)

    Book  Google Scholar 

  20. N.J. Vilenkin, A.U. Klimyk, Representation of Lie Groups and Special Functions, vols. 1–3 (Kluwer, Dordrecht, 1991–1993) (and references therein)

    Google Scholar 

  21. N.J. Vilenkin, A.U. Klimyk, Representation of Lie Groups and Special Functions: Recent Advances (Kluwer, Dordrecht, 1995)

    Book  Google Scholar 

  22. E. Celeghini, M. Gadella, M.A. del Olmo, SU(2), associated Laguerre polynomials and rigged Hilbert spaces, in Quantum Theory and Symmetries with Lie Theory and Its Applications in Physics, vol. 2, ed. by V. Dobrev, pp. 373–383 in Springer Proceedings in Mathematics & Statistics, vol. 255 (Springer, Singapore, 2018)

    Google Scholar 

  23. T.H. Koornwinder, Representation of SU(2) and Jacobi polynomials (2016). arXiv:1606.08189 [math.CA]

    Google Scholar 

  24. C. Truesdell, An Essay Toward a Unified Theory of Special Functions. Annals of Mathematical Studies, vol. 18 (Princeton University Press, Princeton, 1949)

    Google Scholar 

  25. E. Celeghini, M.A. del Olmo, Coherent orthogonal polynomials. Ann. Phys. 335, 78 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. E. Celeghini, M.A. del Olmo, Algebraic special functions and SO(3,  2). Ann. Phys. 333, 90 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. E. Celeghini, M. Gadella, M.A. del Olmo, Spherical harmonics and rigged Hilbert spaces. J. Math. Phys. 59, 053502 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  28. E. Celeghini, M.A. del Olmo, Group theoretical aspects of \(L^2(\mathbb {R}^+)\), \(L^2(\mathbb {R}^2)\) and associated Laguerre polynomials in Physical and Mathematical Aspects of Symmetries, ed. by S. Duarte, J.P. Gazeau, et al., (Springer, New York, 2018), pp. 133–138

    Google Scholar 

  29. E. Celeghini, M.A. del Olmo, M.A. Velasco, Lie groups, algebraic special functions and Jacobi polynomials. J. Phys.: Conf. Ser. 597, 012023 (2015)

    Google Scholar 

  30. W. Miller, Jr., Symmetry and Separation of Variables (Addison-Wesley, Reading, 1977)

    Google Scholar 

  31. G. Lauricella, Sulle funzioni ipergeometriche a pui variable. Rend. Circ. Mat. Palermo 7, 111 (1893)

    Article  Google Scholar 

  32. E. Wigner, Einige Folgerungen aus der Schrödingerschen Theorie für die Termstrukturen. Z. Phys. 43, 624 (1927)

    Article  ADS  Google Scholar 

  33. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Functions (Cambridge University Press, New York, 2010)

    MATH  Google Scholar 

  34. Y.L. Luke, The Special Functions and Their Approximations, vol.1 (Academic Press, San Diego, 1969), pp. 275–276

    Google Scholar 

  35. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, San Diego, 1972)

    MATH  Google Scholar 

  36. L.C. Biedenharn, J.D. Louck, Angular Momentum in Quantum Mechanics (Addison-Wesley, Reading, 1981)

    MATH  Google Scholar 

  37. W.-K. Tung, Group Theory in Physics (World Scientific, Singapore, 1985)

    Book  Google Scholar 

  38. E. Schrödinger, Further studies on solving eigenvalue problems by factorization. Proc. Roy. Irish Acad. A46, 183 (1940/1941); The Factorization of the Hypergeometric Equation, Proc. Roy. Irish Acad. A47, 53 (1941)

    Google Scholar 

  39. L. Infeld, T.E. Hull, The factorization method. Rev. Mod. Phys. 23, 21 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  40. D. Fernández, J. Negro, M.A. del Olmo, Group approach to the factorization of the radial oscillator equation. Ann. Phys. 252, 386 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  41. V. Bargmann, Irreducible unitary representations of the Lorentz group. Ann. Math. 48, 368 (1947)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported in part by the Ministerio de Economía y Competitividad of Spain under grant MTM2014-57129-C2-1-P and the Junta de Castilla y León (Projects VA057U16, VA137G18, and BU229P18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano A. del Olmo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Celeghini, E., del Olmo, M.A., Velasco, M.A. (2019). Jacobi Polynomials as su(2, 2) Unitary Irreducible Representation. In: Kuru, Ş., Negro, J., Nieto, L. (eds) Integrability, Supersymmetry and Coherent States. CRM Series in Mathematical Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-20087-9_10

Download citation

Publish with us

Policies and ethics