Skip to main content

Regenerative Medicine for the Treatment of Congenital Heart Disease

  • Chapter
  • First Online:

Abstract

The treatment of congenital heart diseases (CHDs) has improved tremendously over the last decades leading to an increasing life expectancy of this particular population. Physicians now have a broad range of therapeutic option: medical therapy, interventional procedures, or surgery. Nevertheless, shortcomings remain. The ongoing developments in regenerative medicine pave the way toward a new area in the management of CHD, especially regarding surgical intervention. Patients with CHD have a very specific need for certain devices or conduits, which bioengineering and stem cell therapy hope to meet. The development of tissue-engineered products such as blood vessels and heart valves, some of which are currently being evaluated in both preclinical and clinical setting for patients with CHD, has become a promising new direction for regenerative medicine. There is hope that future success with stem cell and tissue engineering therapy will help circumvent the unacceptably long waiting times for heart transplantation by augmenting heart function equivalent to that from mechanical circulatory support devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. van der Linde D, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58(21):2241–7.

    Article  PubMed  Google Scholar 

  2. Gross RE. Surgical management of the patent ductus arteriosus: with summary of four surgically treated cases. Ann Surg. 1939;110(3):321–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jortveit J, et al. Trends in mortality of congenital heart defects. Congenit Heart Dis. 2016;11(2):160–8.

    Article  PubMed  Google Scholar 

  4. Marelli AJ, et al. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation. 2014;130(9):749–56.

    Article  PubMed  Google Scholar 

  5. Van Dorn CS, et al. Lifetime cardiac reinterventions following the Fontan procedure. Pediatr Cardiol. 2015;36(2):329–34.

    Article  PubMed  Google Scholar 

  6. Voeller RK, et al. Trends in the indications and survival in pediatric heart transplants: a 24-year single-center experience in 307 patients. Ann Thorac Surg. 2012;94(3):807–15; discussion 815–6.

    Article  PubMed  Google Scholar 

  7. Lamour JM, et al. The effect of age, diagnosis, and previous surgery in children and adults undergoing heart transplantation for congenital heart disease. J Am Coll Cardiol. 2009;54(2):160–5.

    Article  PubMed  Google Scholar 

  8. Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  9. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2015;17(1):11–22.

    Article  CAS  PubMed  Google Scholar 

  10. Simpson DL, et al. A strong regenerative ability of cardiac stem cells derived from neonatal hearts. Circulation. 2012;126(11 Suppl 1):S46–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nerem RM. Tissue engineering in the USA. Med Biol Eng Comput. 1992;30(4):CE8–12.

    Article  CAS  PubMed  Google Scholar 

  12. Brennan MP, et al. Tissue-engineered vascular grafts demonstrate evidence of growth and development when implanted in a juvenile animal model. Ann Surg. 2008;248(3):370–7.

    PubMed  Google Scholar 

  13. Menzoian JO, Koshar AL, Rodrigues N. Alexis Carrel, Rene Leriche, Jean Kunlin, and the history of bypass surgery. J Vasc Surg. 2011;54(2):571–4.

    Article  PubMed  Google Scholar 

  14. Blakemore AH, Voorhees AB Jr. The use of tubes constructed from vinyon N cloth in bridging arterial defects; experimental and clinical. Ann Surg. 1954;140(3):324–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kieffer E, et al. Allograft replacement for infrarenal aortic graft infection: early and late results in 179 patients. J Vasc Surg. 2004;39(5):1009–17.

    Article  PubMed  Google Scholar 

  16. van Brakel TJ, et al. High incidence of Dacron conduit stenosis for extracardiac Fontan procedure. J Thorac Cardiovasc Surg. 2014;147(5):1568–72.

    Article  PubMed  Google Scholar 

  17. Robbers-Visser D, et al. Results of staged total cavopulmonary connection for functionally univentricular hearts; comparison of intra-atrial lateral tunnel and extracardiac conduit. Eur J Cardiothorac Surg. 2010;37(4):934–41.

    Article  PubMed  Google Scholar 

  18. Klinkert P, et al. Saphenous vein versus PTFE for above-knee femoropopliteal bypass. A review of the literature. Eur J Vasc Endovasc Surg. 2004;27(4):357–62.

    Article  CAS  PubMed  Google Scholar 

  19. Herring M, Gardner A, Glover J. Seeding human arterial prostheses with mechanically derived endothelium. The detrimental effect of smoking. J Vasc Surg. 1984;1(2):279–89.

    Article  CAS  PubMed  Google Scholar 

  20. Chlupac J, Filova E, Bacakova L. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery. Physiol Res. 2009;58(Suppl 2):S119–39.

    PubMed  Google Scholar 

  21. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  CAS  PubMed  Google Scholar 

  22. Greisler HP. Arterial regeneration over absorbable prostheses. Arch Surg. 1982;117(11):1425–31.

    Article  CAS  PubMed  Google Scholar 

  23. Shinoka T, et al. Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg. 1998;115(3):536–45; discussion 545–6.

    Article  CAS  PubMed  Google Scholar 

  24. Shin’oka T, Imai Y, Ikada Y. Transplantation of a tissue-engineered pulmonary artery. N Engl J Med. 2001;344(7):532–3.

    Article  PubMed  Google Scholar 

  25. Naito Y, et al. Successful clinical application of tissue-engineered graft for extracardiac Fontan operation. J Thorac Cardiovasc Surg. 2003;125(2):419–20.

    Article  PubMed  Google Scholar 

  26. Hibino N, et al. Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg. 2010;139(2):431–6, 436 e1–2

    Article  PubMed  Google Scholar 

  27. Sugiura T, et al. Tissue-engineered vascular grafts in children with congenital heart disease: intermediate term follow-up. Semin Thorac Cardiovasc Surg. 2018;30(2):175–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hibino N, et al. Tissue-engineered vascular grafts form neovessels that arise from regeneration of the adjacent blood vessel. FASEB J. 2011;25(8):2731–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roh JD, et al. Tissue-engineered vascular grafts transform into mature blood vessels via an inflammation-mediated process of vascular remodeling. Proc Natl Acad Sci U S A. 2010;107(10):4669–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee YU, et al. Rational design of an improved tissue-engineered vascular graft: determining the optimal cell dose and incubation time. Regen Med. 2016;11(2):159–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Olausson M, et al. Transplantation of an allogeneic vein bioengineered with autologous stem cells: a proof-of-concept study. Lancet. 2012;380(9838):230–7.

    Article  PubMed  Google Scholar 

  32. Meyer SR, et al. Comparison of aortic valve allograft decellularization techniques in the rat. J Biomed Mater Res A. 2006;79(2):254–62.

    Article  PubMed  CAS  Google Scholar 

  33. Allaire E, et al. The immunogenicity of the extracellular matrix in arterial xenografts. Surgery. 1997;122(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  34. Syedain Z, et al. Tissue engineering of acellular vascular grafts capable of somatic growth in young lambs. Nat Commun. 2016;7:12951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Syedain ZH, et al. Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. Tissue Eng Part A. 2014;20(11–12):1726–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bockeria LA, et al. Total cavopulmonary connection with a new bioabsorbable vascular graft: first clinical experience. J Thorac Cardiovasc Surg. 2017;153(6):1542–50.

    Article  PubMed  Google Scholar 

  37. Itoh M, et al. Scaffold-free tubular tissues created by a bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae. PLoS One. 2015;10(9):e0136681.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Itoh M, et al. Correction: scaffold-free tubular tissues created by a bio-3D printer undergo remodeling and endothelialization when implanted in rat aortae. PLoS One. 2015;10(12):e0145971.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science. 1986;231(4736):397–400.

    Article  CAS  PubMed  Google Scholar 

  40. Pluchinotta FR, et al. Surgical atrioventricular valve replacement with melody valve in infants and children. Circ Cardiovasc Interv. 2018;11(11):e007145.

    Article  PubMed  Google Scholar 

  41. Murray G. Homologous aortic-valve-segment transplants as surgical treatment for aortic and mitral insufficiency. Angiology. 1956;7(5):466–71.

    Article  CAS  PubMed  Google Scholar 

  42. Musci M, et al. Homograft aortic root replacement in native or prosthetic active infective endocarditis: twenty-year single-center experience. J Thorac Cardiovasc Surg. 2010;139(3):665–73.

    Article  PubMed  Google Scholar 

  43. Yankah AC, et al. Homograft reconstruction of the aortic root for endocarditis with periannular abscess: a 17-year study. Eur J Cardiothorac Surg. 2005;28(1):69–75.

    Article  PubMed  Google Scholar 

  44. Gulbins H, et al. Mitral valve surgery utilizing homografts: early results. J Heart Valve Dis. 2000;9(2):222–9.

    CAS  PubMed  Google Scholar 

  45. Emmert MY, et al. Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model. Sci Transl Med. 2018;10(440):eaan4587.

    Article  PubMed  CAS  Google Scholar 

  46. Shinoka T, et al. Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg. 1995;60(6 Suppl):S513–6.

    Article  CAS  PubMed  Google Scholar 

  47. Steinhoff G, et al. Tissue engineering of pulmonary heart valves on allogenic acellular matrix conduits: in vivo restoration of valve tissue. Circulation. 2000;102(19 Suppl 3):III50–5.

    CAS  PubMed  Google Scholar 

  48. Dohmen PM, et al. Ross operation with a tissue-engineered heart valve. Ann Thorac Surg. 2002;74(5):1438–42.

    Article  PubMed  Google Scholar 

  49. Cebotari S, et al. Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation. 2006;114(1 Suppl):I132–7.

    PubMed  Google Scholar 

  50. Simon P, et al. Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur J Cardiothorac Surg. 2003;23(6):1002–6; discussion 1006.

    Article  CAS  PubMed  Google Scholar 

  51. Iop L, et al. Decellularized cryopreserved allografts as off-the-shelf allogeneic alternative for heart valve replacement: in vitro assessment before clinical translation. J Cardiovasc Transl Res. 2017;10(2):93–103.

    Article  PubMed  Google Scholar 

  52. Cebotari S, et al. Detergent decellularization of heart valves for tissue engineering: toxicological effects of residual detergents on human endothelial cells. Artif Organs. 2010;34(3):206–10.

    Article  PubMed  Google Scholar 

  53. Mitchell RN, Jonas RA, Schoen FJ. Pathology of explanted cryopreserved allograft heart valves: comparison with aortic valves from orthotopic heart transplants. J Thorac Cardiovasc Surg. 1998;115(1):118–27.

    Article  CAS  PubMed  Google Scholar 

  54. Goffin YA, et al. Morphologic study of homograft valves before and after cryopreservation and after short-term implantation in patients. Cardiovasc Pathol. 1997;6(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  55. Fallon AM, et al. In vivo remodeling potential of a novel bioprosthetic tricuspid valve in an ovine model. J Thorac Cardiovasc Surg. 2014;148(1):333–340 e1.

    Article  PubMed  Google Scholar 

  56. Zafar F, et al. Physiological growth, Remodeling potential, and preserved function of a novel bioprosthetic tricuspid valve: tubular bioprosthesis made of small intestinal submucosa-derived extracellular matrix. J Am Coll Cardiol. 2015;66(8):877–88.

    Article  PubMed  Google Scholar 

  57. Baker RS, et al. Tubular bioprosthetic tricuspid valve implant demonstrates chordae formation and no calcification: long-term follow-up. J Am Coll Cardiol. 2017;70(19):2456–8.

    Article  PubMed  Google Scholar 

  58. Guariento A, et al. Novel valve replacement with an extracellular matrix scaffold in an infant with single ventricle physiology. Cardiovasc Pathol. 2016;25(2):165–8.

    Article  PubMed  Google Scholar 

  59. Bibevski S, Levy A, Scholl FG. Mitral valve replacement using a handmade construct in an infant. Interact Cardiovasc Thorac Surg. 2017;24(4):639–40.

    PubMed  Google Scholar 

  60. Feins EN, et al. A growth-accommodating implant for paediatric applications. Nat Biomed Eng. 2017;1:818–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bergmann O, et al. Evidence for cardiomyocyte renewal in humans. Science. 2009;324(5923):98–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lunde K, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355(12):1199–209.

    Article  CAS  PubMed  Google Scholar 

  63. Schachinger V, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355(12):1210–21.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang S, et al. Impact of timing on efficacy and safetyof intracoronary autologous bone marrow stem cells transplantation in acute myocardial infarction: a pooled subgroup analysis of randomized controlled trials. Clin Cardiol. 2009;32(8):458–66.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hare JM, et al. Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA. 2012;308(22):2369–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Makkar RR, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379(9819):895–904.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Malliaras K, et al. Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol. 2014;63(2):110–22.

    Article  PubMed  Google Scholar 

  68. Liu YW, et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat Biotechnol. 2018;36(7):597–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wilmut I, et al. Development of a global network of induced pluripotent stem cell haplobanks. Regen Med. 2015;10(3):235–8.

    Article  CAS  PubMed  Google Scholar 

  70. Nakatsuji N, Nakajima F, Tokunaga K. HLA-haplotype banking and iPS cells. Nat Biotechnol. 2008;26(7):739–40.

    Article  CAS  PubMed  Google Scholar 

  71. Lacis A, Erglis A. Intramyocardial administration of autologous bone marrow mononuclear cells in a critically ill child with dilated cardiomyopathy. Cardiol Young. 2011;21(1):110–2.

    Article  PubMed  Google Scholar 

  72. Olgunturk R, et al. Peripheric stem cell transplantation in children with dilated cardiomyopathy: preliminary report of first two cases. Pediatr Transplant. 2010;14(2):257–60.

    Article  PubMed  Google Scholar 

  73. Rupp S, et al. Intracoronary bone marrow cell application for terminal heart failure in children. Cardiol Young. 2012;22(5):558–63.

    Article  PubMed  Google Scholar 

  74. Limsuwan A, et al. Transcoronary bone marrow-derived progenitor cells in a child with myocardial infarction: first pediatric experience. Clin Cardiol. 2010;33(8):E7–12.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Bergmane I, et al. Follow-up of the patients after stem cell transplantation for pediatric dilated cardiomyopathy. Pediatr Transplant. 2013;17(3):266–70.

    Article  CAS  PubMed  Google Scholar 

  76. Burkhart HM, et al. Regenerative therapy for hypoplastic left heart syndrome: first report of intraoperative intramyocardial injection of autologous umbilical-cord blood-derived cells. J Thorac Cardiovasc Surg. 2015;149(3):e35–7.

    Article  PubMed  Google Scholar 

  77. Rupp S, et al. A regenerative strategy for heart failure in hypoplastic left heart syndrome: intracoronary administration of autologous bone marrow-derived progenitor cells. J Heart Lung Transplant. 2010;29(5):574–7.

    Article  PubMed  Google Scholar 

  78. Qureshi MY, et al. Cell-based therapy for myocardial dysfunction after Fontan operation in hypoplastic left heart syndrome. Mayo Clin Proc Innov Qual Outcomes. 2017;1(2):185–91.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ishigami S, et al. Intracoronary autologous cardiac progenitor cell transfer in patients with hypoplastic left heart syndrome: the TICAP prospective phase 1 controlled trial. Circ Res. 2015;116(4):653–64.

    Article  CAS  PubMed  Google Scholar 

  80. Tarui S, et al. Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: three-year follow-up of the transcoronary infusion of cardiac progenitor cells in patients with single-ventricle physiology (TICAP) trial. J Thorac Cardiovasc Surg. 2015;150(5):1198–207. 1208 e1-2

    Article  PubMed  Google Scholar 

  81. Ishigami S, et al. Intracoronary cardiac progenitor cells in single ventricle physiology: the PERSEUS (cardiac progenitor cell infusion to treat univentricular heart disease) randomized phase 2 trial. Circ Res. 2017;120(7):1162–73.

    Article  CAS  PubMed  Google Scholar 

  82. Oh H. Cell therapy trials in congenital heart disease. Circ Res. 2017;120(8):1353–66.

    Article  CAS  PubMed  Google Scholar 

  83. Tsilimigras DI, et al. Stem cell therapy for congenital heart disease: a systematic review. Circulation. 2017;136(24):2373–85.

    Article  PubMed  Google Scholar 

  84. Dow J, et al. Washout of transplanted cells from the heart: a potential new hurdle for cell transplantation therapy. Cardiovasc Res. 2005;67(2):301–7.

    Article  CAS  PubMed  Google Scholar 

  85. Hirt MN, Hansen A, Eschenhagen T. Cardiac tissue engineering: state of the art. Circ Res. 2014;114(2):354–67.

    Article  CAS  PubMed  Google Scholar 

  86. Levit RD, et al. Cellular encapsulation enhances cardiac repair. J Am Heart Assoc. 2013;2(5):e000367.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Gerbin KA, et al. Enhanced electrical integration of engineered human myocardium via intramyocardial versus epicardial delivery in infarcted rat hearts. PLoS One. 2015;10(7):e0131446.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Zimmermann WH, et al. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat Med. 2006;12(4):452–8.

    Article  CAS  PubMed  Google Scholar 

  89. Sekine H, et al. Endothelial cell coculture within tissue-engineered cardiomyocyte sheets enhances neovascularization and improves cardiac function of ischemic hearts. Circulation. 2008;118(14 Suppl):S145–52.

    Article  CAS  PubMed  Google Scholar 

  90. Sekine H, et al. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun. 2013;4:1399.

    Article  PubMed  CAS  Google Scholar 

  91. Riegler J, et al. Cardiac tissue slice transplantation as a model to assess tissue-engineered graft thickness, survival, and function. Circulation. 2014;130(11 Suppl 1):S77–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Noguchi R, et al. Development of a three-dimensional pre-vascularized scaffold-free contractile cardiac patch for treating heart disease. J Heart Lung Transplant. 2016;35(1):137–45.

    Article  PubMed  Google Scholar 

  93. Ong CS, et al. Biomaterial-free three-dimensional bioprinting of cardiac tissue using human induced pluripotent stem cell derived Cardiomyocytes. Sci Rep. 2017;7(1):4566.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Ye L, et al. Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell. 2014;15(6):750–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hata H, et al. Grafted skeletal myoblast sheets attenuate myocardial remodeling in pacing-induced canine heart failure model. J Thorac Cardiovasc Surg. 2006;132(4):918–24.

    Article  PubMed  Google Scholar 

  96. Miyagawa S, et al. Impaired myocardium regeneration with skeletal cell sheets--a preclinical trial for tissue-engineered regeneration therapy. Transplantation. 2010;90(4):364–72.

    Article  PubMed  Google Scholar 

  97. Sawa Y, et al. Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surg Today. 2012;42(2):181–4.

    Article  PubMed  Google Scholar 

  98. Sawa Y, et al. Safety and efficacy of autologous skeletal myoblast sheets (TCD-51073) for the treatment of severe chronic heart failure due to ischemic heart disease. Circ J. 2015;79(5):991–9.

    Article  PubMed  Google Scholar 

  99. Menasche P, et al. Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report. Eur Heart J. 2015;36(30):2011–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dzilic, E., Doppler, S., Lange, R., Krane, M. (2019). Regenerative Medicine for the Treatment of Congenital Heart Disease. In: Serpooshan, V., Wu, S. (eds) Cardiovascular Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-20047-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20047-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20046-6

  • Online ISBN: 978-3-030-20047-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics