Skip to main content

Skin Tissue Engineering in Severe Burns: A Review on Its Therapeutic Applications

  • Chapter
  • First Online:
Regenerative Medicine and Plastic Surgery

Abstract

Current advances in basic stem cell research and tissue engineering augur well for the development of improved cultured skin tissue substitutes. Although the ability to grow autologous keratinocytes in vitro from a small skin biopsy into sheets of stratified epithelium (within 3–4 weeks) helped alleviate the problem of insufficient donor site for extensive burn, many burn units still have to grapple with insufficient skin allografts which are used as intermediate wound coverage after burn excision. Alternatives offered by tissue-engineered skin dermal replacements to meet emergency demand have been used fairly successfully. Despite the availability of these commercial products, they all suffer from the same problems of extremely high cost, subnormal skin microstructure, and inconsistent engraftment, especially in full-thickness burns. This review seeks to bring the reader through the beginnings of skin tissue engineering, the utilization of some of the key products developed for the treatment of severe burns, and the hope of harnessing stem cells to improve on current practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sontheimer RD. Skin is not the largest organ. J Invest Dermatol. 2014;134(2):581–2.

    Article  CAS  PubMed  Google Scholar 

  2. Supp DM, Boyce ST. Engineered skin substitutes: practices and potentials. Clin Dermatol. 2005;23(4):403–12.

    Article  PubMed  Google Scholar 

  3. Breitkreutz D, Mirancea N, Nischt R. Basement membranes in skin: unique matrix structures with diverse functions? Histochem Cell Biol. 2009;132(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  4. Breitkreutz D, Koxholt I, Thiemann K, Nischt R. Skin basement membrane: the foundation of epidermal integrity–BM functions and diverse roles of bridging molecules nidogen and perlecan. Biomed Res Int. 2013;2013:179784.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Nerem RM. Tissue engineering in the USA. Med Biol Eng Comput. 1992;30(4):CE8–12.

    Article  CAS  PubMed  Google Scholar 

  6. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920–6.

    Article  CAS  PubMed  Google Scholar 

  7. Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell. 1975;6(3):331–43.

    Article  CAS  PubMed  Google Scholar 

  8. Green H, Kehinde O, Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci U S A. 1979;76(11):5665–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yannas IV, Burke JF, Huang C, Gordon PL. Correlation of in vivo collagen degradation rate with in vitro measurements. J Biomed Mater Res. 1975;9(6):623–8.

    Article  CAS  PubMed  Google Scholar 

  10. Yannas IV, Burke JF. Design of an artificial skin. I. Basic design principles. J Biomed Mater Res. 1980;14(1):65–81.

    Article  CAS  PubMed  Google Scholar 

  11. O’Conner NE, Mulliken JB, Banks-Schlegel S, Kehinde O, Green H. Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet. 1981;1(8211):75–8.

    Article  Google Scholar 

  12. Green H. The birth of therapy with cultured cells. BioEssays. 2008;30(9):897–903.

    Article  PubMed  Google Scholar 

  13. Gallico GG 3rd, O’Connor NE, Compton CC, Kehinde O, Green H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N Engl J Med. 1984;311(7):448–51.

    Article  PubMed  Google Scholar 

  14. Burke JF, Yannas IV, Quinby WC Jr, Bondoc CC, Jung WK. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg. 1981;194(4):413–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heimbach D, Luterman A, Burke J, Cram A, Herndon D, Hunt J, Jordan M, McManus W, Solem L, Warden G, et al. Artificial dermis for major burns. A multi-center randomized clinical trial. Ann Surg. 1988;208(3):313–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heimbach DM, Warden GD, Luterman A, Jordan MH, Ozobia N, Ryan CM, Voigt DW, Hickerson WL, Saffle JR, DeClement FA, Sheridan RL, Dimick AR. Multicenter postapproval clinical trial of Integra dermal regeneration template for burn treatment. J Burn Care Rehabil. 2003;24(1):42–8.

    Article  PubMed  Google Scholar 

  17. Heitland A, Piatkowski A, Noah EM, Pallua N. Update on the use of collagen/glycosaminoglycate skin substitute-six years of experiences with artificial skin in 15 German burn centers. Burns. 2004;30(5):471–5.

    Article  CAS  PubMed  Google Scholar 

  18. Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface. 2010;7(43):229–58.

    Article  CAS  PubMed  Google Scholar 

  19. Eldad A, Burt A, Clarke JA, Gusterson B. Cultured epithelium as a skin substitute. Burns Incl Therm Inj. 1987;13(3):173–80.

    Article  CAS  PubMed  Google Scholar 

  20. De Luca M, Albanese E, Bondanza S, Megna M, Ugozzoli L, Molina F, Cancedda R, Santi PL, Bormioli M, Stella M, et al. Multicentre experience in the treatment of burns with autologous and allogenic cultured epithelium, fresh or preserved in a frozen state. Burns. 1989;15(5):303–9.

    Article  PubMed  Google Scholar 

  21. Herzog SR, Meyer A, Woodley D, Peterson HD. Wound coverage with cultured autologous keratinocytes: use after burn wound excision, including biopsy follow-up. J Trauma. 1988;28(2):195–8.

    Article  CAS  PubMed  Google Scholar 

  22. Munster AM. Whither [corrected] skin replacement? Burns. 1997;23(1):v.

    Article  CAS  PubMed  Google Scholar 

  23. Cuono C, Langdon R, McGuire J. Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury. Lancet. 1986;1(8490):1123–4.

    Article  CAS  PubMed  Google Scholar 

  24. Cuono CB, Langdon R, Birchall N, Barttelbort S, McGuire J. Composite autologous-allogeneic skin replacement: development and clinical application. Plast Reconstr Surg. 1987;80(4):626–37.

    Article  CAS  PubMed  Google Scholar 

  25. Nave M. Wound bed preparation: approaches to replacement of dermis. J Burn Care Rehabil. 1992;13(1):147–53.

    Article  CAS  PubMed  Google Scholar 

  26. Compton CC, Hickerson W, Nadire K, Press W. Acceleration of skin regeneration from cultured epithelial autografts by transplantation to homograft dermis. J Burn Care Rehabil. 1993;14(6):653–62.

    Article  CAS  PubMed  Google Scholar 

  27. Hickerson WL, Compton C, Fletchall S, Smith LR. Cultured epidermal autografts and allodermis combination for permanent burn wound coverage. Burns. 1994;20(Suppl 1):S52–5. discussion S5–6

    Article  PubMed  Google Scholar 

  28. Sood R, Roggy D, Zieger M, Balledux J, Chaudhari S, Koumanis DJ, Mir HS, Cohen A, Knipe C, Gabehart K, Coleman JJ. Cultured epithelial autografts for coverage of large burn wounds in eighty-eight patients: the Indiana University experience. J Burn Care Res. 2010;31(4):559–68.

    Article  PubMed  Google Scholar 

  29. Nivatvongs S, Dhitavat V, Jungsangasom A, Attajarusit Y, Sroyson S, Prabjabok S, Pinmongkol C. Thirteen years of the Thai red cross organ donation centre. Transplant Proc. 2008;40(7):2091–4.

    Article  CAS  PubMed  Google Scholar 

  30. Oniscu GC, Forsythe JL. An overview of transplantation in culturally diverse regions. Ann Acad Med Singap. 2009;38(4):365.

    PubMed  Google Scholar 

  31. Orgill DP, Butler C, Regan JF, Barlow MS, Yannas IV, Compton CC. Vascularized collagen-glycosaminoglycan matrix provides a dermal substrate and improves take of cultured epithelial autografts. Plast Reconstr Surg. 1998;102(2):423–9.

    Article  CAS  PubMed  Google Scholar 

  32. Hansbrough JF, Franco ES. Skin replacements. Clin Plast Surg. 1998;25(3):407–23.

    Article  CAS  PubMed  Google Scholar 

  33. Siwy BK, Compton CC. Cultured epidermis: Indiana University Medical Center’s experience. J Burn Care Rehabil. 1992;13(1):130–7.

    Article  CAS  PubMed  Google Scholar 

  34. Barrandon Y, Green H. Three clonal types of keratinocyte with different capacities for multiplication. Proc Natl Acad Sci U S A. 1987;84(8):2302–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pellegrini G, Ranno R, Stracuzzi G, Bondanza S, Guerra L, Zambruno G, Micali G, De Luca M. The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation. 1999;68(6):868–79.

    Article  CAS  PubMed  Google Scholar 

  36. Ronfard V, Rives JM, Neveux Y, Carsin H, Barrandon Y. Long-term regeneration of human epidermis on third degree burns transplanted with autologous cultured epithelium grown on a fibrin matrix. Transplantation. 2000;70(11):1588–98.

    Article  CAS  PubMed  Google Scholar 

  37. Pellegrini G, Bondanza S, Guerra L, De Luca M. Cultivation of human keratinocyte stem cells: current and future clinical applications. Med Biol Eng Comput. 1998;36(6):778–90.

    Article  CAS  PubMed  Google Scholar 

  38. Chua AW, Ma DR, Song IC, Phan TT, Lee ST, Song C. In vitro evaluation of fibrin mat and Tegaderm wound dressing for the delivery of keratinocytes—implications of their use to treat burns. Burns. 2008;34(2):175–80.

    Article  CAS  PubMed  Google Scholar 

  39. Atiyeh BS, Costagliola M. Cultured epithelial autograft (CEA) in burn treatment: three decades later. Burns. 2007;33(4):405–13.

    Article  PubMed  Google Scholar 

  40. De Luca M, Bondanza S, Cancedda R, Tamisani AM, Di Noto C, Muller L, Dioguardi D, Brienza E, Calvario A, Zermani R, et al. Permanent coverage of full skin thickness burns with autologous cultured epidermis and re-epithelialization of partial skin thickness lesions induced by allogeneic cultured epidermis: a multicentre study in the treatment of children. Burns. 1992;18(Suppl 1):S16–9.

    Article  PubMed  Google Scholar 

  41. Clark RA, Ghosh K, Tonnesen MG. Tissue engineering for cutaneous wounds. J Invest Dermatol. 2007;127(5):1018–29.

    Article  CAS  PubMed  Google Scholar 

  42. Bottcher-Haberzeth S, Biedermann T, Reichmann E. Tissue engineering of skin. Burns. 2010;36(4):450–60.

    Article  PubMed  Google Scholar 

  43. MacNeil S. Progress and opportunities for tissue-engineered skin. Nature. 2007;445(7130):874–80.

    Article  CAS  PubMed  Google Scholar 

  44. Shahrokhi S, Arno A, Jeschke MG. The use of dermal substitutes in burn surgery: acute phase. Wound Repair Regen. 2014;22(1):14–22.

    Article  PubMed  Google Scholar 

  45. van der Veen VC, Boekema BK, Ulrich MM, Middelkoop E. New dermal substitutes. Wound Repair Regen. 2011;19(Suppl 1):s59–65.

    Article  PubMed  Google Scholar 

  46. Philandrianos C, Andrac-Meyer L, Mordon S, Feuerstein JM, Sabatier F, Veran J, Magalon G, Casanova D. Comparison of five dermal substitutes in full-thickness skin wound healing in a porcine model. Burns. 2012;38(6):820–9.

    Article  PubMed  Google Scholar 

  47. Jones I, Currie L, Martin R. A guide to biological skin substitutes. Br J Plast Surg. 2002;55(3):185–93.

    Article  CAS  PubMed  Google Scholar 

  48. Nguyen DQ, Potokar TS, Price P. An objective long-term evaluation of Integra (a dermal skin substitute) and split thickness skin grafts, in acute burns and reconstructive surgery. Burns. 2010;36(1):23–8.

    Article  PubMed  Google Scholar 

  49. Bargues L, Boyer S, Leclerc T, Duhamel P, Bey E. Incidence and microbiology of infectious complications with the use of artificial skin Integra in burns. Ann Chir Plast Esthet. 2009;54(6):533–9.

    Article  CAS  PubMed  Google Scholar 

  50. Lohana P, Hassan S, Watson SB. Integra in burns reconstruction: our experience and report of an unusual immunological reaction. Ann Burns Fire Disasters. 2014;27(1):17–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Dantzer E, Braye FM. Reconstructive surgery using an artificial dermis (Integra): results with 39 grafts. Br J Plast Surg. 2001;54(8):659–64.

    Article  CAS  PubMed  Google Scholar 

  52. Pollard RL, Kennedy PJ, Maitz PK. The use of artificial dermis (Integra) and topical negative pressure to achieve limb salvage following soft-tissue loss caused by meningococcal septicaemia. J Plast Reconstr Aesthet Surg. 2008;61(3):319–22.

    Article  PubMed  Google Scholar 

  53. Leffler M, Horch RE, Dragu A, Bach AD. The use of the artificial dermis (Integra) in combination with vacuum assisted closure for reconstruction of an extensive burn scar—a case report. J Plast Reconstr Aesthet Surg. 2010;63(1):e32–5.

    Article  CAS  PubMed  Google Scholar 

  54. Sinna R, Qassemyar Q, Boloorchi A, Benhaim T, Carton S, Perignon D, Robbe M. Role of the association artificial dermis and negative pressure therapy: about two cases. Ann Chir Plast Esthet. 2009;54(6):582–7.

    Article  CAS  PubMed  Google Scholar 

  55. Moiemen NS, Yarrow J, Kamel D, Kearns D, Mendonca D. Topical negative pressure therapy: does it accelerate neovascularisation within the dermal regeneration template, Integra? A prospective histological in vivo study. Burns. 2010;36(6):764–8.

    Article  PubMed  Google Scholar 

  56. Kolokythas P, Aust MC, Vogt PM, Paulsen F. Dermal substitute with the collagen-elastin matrix Matriderm in burn injuries: a comprehensive review. Handchir Mikrochir Plast Chir. 2008;40(6):367–71.

    Article  CAS  PubMed  Google Scholar 

  57. van Zuijlen PP, van Trier AJ, Vloemans JF, Groenevelt F, Kreis RW, Middelkoop E. Graft survival and effectiveness of dermal substitution in burns and reconstructive surgery in a one-stage grafting model. Plast Reconstr Surg. 2000;106(3):615–23.

    Article  PubMed  Google Scholar 

  58. Haslik W, Kamolz LP, Manna F, Hladik M, Rath T, Frey M. Management of full-thickness skin defects in the hand and wrist region: first long-term experiences with the dermal matrix Matriderm. J Plast Reconstr Aesthet Surg. 2010;63(2):360–4.

    Article  CAS  PubMed  Google Scholar 

  59. Bottcher-Haberzeth S, Biedermann T, Schiestl C, Hartmann-Fritsch F, Schneider J, Reichmann E, Meuli M. Matriderm® 1 mm versus Integra® Single Layer 1.3 mm for one-step closure of full thickness skin defects: a comparative experimental study in rats. Pediatr Surg Int. 2012;28(2):171–7.

    Article  PubMed  Google Scholar 

  60. Conconi MT, De Coppi P, Di Liddo R, Vigolo S, Zanon GF, Parnigotto PP, Nussdorfer GG. Tracheal matrices, obtained by a detergent-enzymatic method, support in vitro the adhesion of chondrocytes and tracheal epithelial cells. Transpl Int. 2005;18(6):727–34.

    Article  CAS  PubMed  Google Scholar 

  61. Burra P, Tomat S, Conconi MT, Macchi C, Russo FP, Parnigotto PP, Naccarato R, Nussdorfer GG. Acellular liver matrix improves the survival and functions of isolated rat hepatocytes cultured in vitro. Int J Mol Med. 2004;14(4):511–5.

    PubMed  Google Scholar 

  62. van der Veen VC, van der Wal MB, van Leeuwen MC, Ulrich MM, Middelkoop E. Biological background of dermal substitutes. Burns. 2010;36(3):305–21.

    Article  PubMed  Google Scholar 

  63. Wainwright DJ. Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns. 1995;21(4):243–8.

    Article  CAS  PubMed  Google Scholar 

  64. Kim EK, Hong JP. Efficacy of negative pressure therapy to enhance take of 1-stage allodermis and a split-thickness graft. Ann Plast Surg. 2007;58(5):536–40.

    Article  CAS  PubMed  Google Scholar 

  65. Yi JW, Kim JK. Prospective randomized comparison of scar appearances between cograft of acellular dermal matrix with autologous split-thickness skin and autologous split-thickness skin graft alone for full-thickness skin defects of the extremities. Plast Reconstr Surg. 2015;135(3):609e–16e.

    Article  CAS  PubMed  Google Scholar 

  66. Greenwood JE, Mackie IP. Neck contracture release with matriderm collagen/elastin dermal matrix. Eplasty. 2011;11:e16.

    PubMed  PubMed Central  Google Scholar 

  67. Yildirimer L, Thanh NT, Seifalian AM. Skin regeneration scaffolds: a multimodal bottom-up approach. Trends Biotechnol. 2012;30(12):638–48.

    Article  CAS  PubMed  Google Scholar 

  68. Tan H, Wasiak J, Paul E, Cleland H. Effective use of Biobrane as a temporary wound dressing prior to definitive split-skin graft in the treatment of severe burn: a retrospective analysis. Burns. 2015;41(5):969–76.

    Article  PubMed  Google Scholar 

  69. Greenwood JE, Clausen J, Kavanagh S. Experience with biobrane: uses and caveats for success. Eplasty. 2009;9:e25.

    PubMed  PubMed Central  Google Scholar 

  70. Cheah AKW, Chong SJ, Tan BK. Early experience with Biobrane in Singapore in the management of partial thickness burns. Proc Singapore Healthcare. 2014;23(3):196–200.

    Article  Google Scholar 

  71. Farroha A, Frew Q, El-Muttardi N, Philp B, Dziewulski P. The use of Biobrane(R) to dress split-thickness skin graft in paediatric burns. Ann Burns Fire Disasters. 2013;26(2):94–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Pham C, Greenwood J, Cleland H, Woodruff P, Maddern G. Bioengineered skin substitutes for the management of burns: a systematic review. Burns. 2007;33(8):946–57.

    Article  PubMed  Google Scholar 

  73. Austin RE, Merchant N, Shahrokhi S, Jeschke MG. A comparison of Biobrane and cadaveric allograft for temporizing the acute burn wound: cost and procedural time. Burns. 2015;41(4):749–53.

    Article  PubMed  Google Scholar 

  74. Debels H, Hamdi M, Abberton K, Morrison W. Dermal matrices and bioengineered skin substitutes: a critical review of current options. Plast Reconstr Surg Global Open. 2015;3(1):e284.

    Article  Google Scholar 

  75. Uhlig C, Rapp M, Hartmann B, Hierlemann H, Planck H, Dittel KK. Suprathel-an innovative, resorbable skin substitute for the treatment of burn victims. Burns. 2007;33:221–9.

    Article  CAS  PubMed  Google Scholar 

  76. Kamolz LP, Lumenta DB, Kitzinger HB, Frey M. Tissue engineering for cutaneous wounds: an overview of current standards and possibilities. Eur Surg. 2008;40(1):19–26.

    Article  Google Scholar 

  77. Highton L, Wallace C, Shah M. Use of Suprathel® for partial thickness burns in children. Burns. 2013;39(1):136–41.

    Article  PubMed  Google Scholar 

  78. Rashaan ZM, Krijnen P, Allema JH, Vloemans AF, Schipper IB, Breederveld RS. Usability and effectiveness of Suprathel® in partial thickness burns in children. Eur J Trauma Emerg Surg. 2017;43(4):549–56.

    Article  CAS  PubMed  Google Scholar 

  79. Schwarze H, Küntscher M, Uhlig C, Hierlemann H, Prantl L, Noack N, Hartmann B. Suprathel, a new skin substitute, in the management of donor sites of split-thickness skin grafts: results of a clinical study. Burns. 2007;33:850–4.

    Article  CAS  PubMed  Google Scholar 

  80. Madry R, Struzyna J, Stachura-Kulach A, Drozdz Ł, Bugaj M. Effectiveness of Suprathel® application in partial thickness burns, frostbites and Lyell syndrome treatment. Pol Przegl Chir. 2011;83:541–8.

    Article  PubMed  Google Scholar 

  81. Fischer S, Kremer T, Horter J, Schaefer A, Ziegler B, Kneser U, Hirche C. Suprathel® for severe burns in the elderly: case report and review of the literature. Burns. 2016;42(5):e86–92.

    Article  CAS  PubMed  Google Scholar 

  82. Pandya AN, Woodward B, Parkhouse N. The use of cultured autologous keratinocytes with integra in the resurfacing of acute burns. Plast Reconstr Surg. 1998;102(3):825–8.

    Article  CAS  PubMed  Google Scholar 

  83. Cooper ML, Andree C, Hansbrough JF, Zapata-Sirvent RL, Spielvogel RL. Direct comparison of a cultured composite skin substitute containing human keratinocytes and fibroblasts to an epidermal sheet graft containing human keratinocytes on athymic mice. J Invest Dermatol. 1993;101(6):811–9.

    Article  CAS  PubMed  Google Scholar 

  84. El Ghalbzouri A, Jonkman MF, Dijkman R, Ponec M. Basement membrane reconstruction in human skin equivalents is regulated by fibroblasts and/or exogenously activated keratinocytes. J Invest Dermatol. 2005;124(1):79–86.

    Article  PubMed  Google Scholar 

  85. Eweida AM, Marei MK. Naturally occurring extracellular matrix scaffolds for dermal regeneration: do they really need cells? Biomed Res Int. 2015;2015:839694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Simman R, Priebe CJ Jr, Simon M. Reconstruction of aplasia cutis congenita of the trunk in a newborn infant using acellular allogenic dermal graft and cultured epithelial autografts. Ann Plast Surg. 2000;44(4):451–4.

    Article  CAS  PubMed  Google Scholar 

  87. Boyce ST, Goretsky MJ, Greenhalgh DG, Kagan RJ, Rieman MT, Warden GD. Comparative assessment of cultured skin substitutes and native skin autograft for treatment of full-thickness burns. Ann Surg. 1995;222(6):743–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Boyce ST, Kagan RJ, Meyer NA, Yakuboff KP, Warden GD. The 1999 clinical research award. Cultured skin substitutes combined with Integra Artificial Skin to replace native skin autograft and allograft for the closure of excised full-thickness burns. J Burn Care Rehabil. 1999;20(6):453–61.

    Article  CAS  PubMed  Google Scholar 

  89. Boyce ST, Kagan RJ, Yakuboff KP, Meyer NA, Rieman MT, Greenhalgh DG, Warden GD. Cultured skin substitutes reduce donor skin harvesting for closure of excised, full-thickness burns. Ann Surg. 2002;235(2):269–79.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Boyce ST, Kagan RJ, Greenhalgh DG, Warner P, Yakuboff KP, Palmieri T, Warden GD. Cultured skin substitutes reduce requirements for harvesting of skin autograft for closure of excised, full-thickness burns. J Trauma. 2006;60(4):821–9.

    PubMed  Google Scholar 

  91. Hansbrough JF, Boyce ST, Cooper ML, Foreman TJ. Burn wound closure with cultured autologous keratinocytes and fibroblasts attached to a collagen-glycosaminoglycan substrate. JAMA. 1989;262(15):2125–30.

    Article  CAS  PubMed  Google Scholar 

  92. Golinski PA, Zoller N, Kippenberger S, Menke H, Bereiter-Hahn J, Bernd A. Development of an engraftable skin equivalent based on matriderm with human keratinocytes and fibroblasts. Handchir Mikrochir Plast Chir. 2009;41(6):327–32.

    Article  CAS  PubMed  Google Scholar 

  93. Golinski P, Menke H, Hofmann M, Valesky E, Butting M, Kippenberger S, Bereiter-Hahn J, Bernd A, Kaufmann R, Zoeller NN. Development and characterization of an engraftable tissue-cultured skin autograft: alternative treatment for severe electrical injuries. Cells Tissues Organs. 2014;200(3–4):227–39.

    Article  CAS  PubMed  Google Scholar 

  94. Zoller N, Valesky E, Butting M, Hofmann M, Kippenberger S, Bereiter-Hahn J, Bernd A, Kaufmann R. Clinical application of a tissue-cultured skin autograft: an alternative for the treatment of non-healing or slowly healing wounds? Dermatology. 2014;229(3):190–8.

    Article  PubMed  CAS  Google Scholar 

  95. Pontiggia L, Klar A, Bottcher-Haberzeth S, Biedermann T, Meuli M, Reichmann E. Optimizing in vitro culture conditions leads to a significantly shorter production time of human dermo-epidermal skin substitutes. Pediatr Surg Int. 2013;29(3):249–56.

    Article  PubMed  Google Scholar 

  96. Hartmann-Fritsch F, Biedermann T, Braziulis E, Luginbuhl J, Pontiggia L, Bottcher-Haberzeth S, van Kuppevelt TH, Faraj KA, Schiestl C, Meuli M, Reichmann E. Collagen hydrogels strengthened by biodegradable meshes are a basis for dermo-epidermal skin grafts intended to reconstitute human skin in a one-step surgical intervention. J Tissue Eng Regen Med. 2016;10:81–91.

    Article  CAS  PubMed  Google Scholar 

  97. Marino D, Luginbuhl J, Scola S, Meuli M, Reichmann E. Bioengineering dermo-epidermal skin grafts with blood and lymphatic capillaries. Sci Transl Med. 2014;6(221):221ra14.

    Article  PubMed  CAS  Google Scholar 

  98. Marino D, Reichmann E, Meuli M. Skingineering. Eur J Pediatr Surg. 2014;24(3):205–13.

    Article  PubMed  Google Scholar 

  99. Tanner JC Jr, Vandeput J, Olley JF. The mesh skin graft. Plast Reconstr Surg. 1964;34:287–92.

    Article  PubMed  Google Scholar 

  100. Hsieh CS, Schuong JY, Huang WS, Huang TT. Five years’ experience of the modified Meek technique in the management of extensive burns. Burns. 2008;34(3):350–4.

    Article  PubMed  Google Scholar 

  101. Menon S, Li Z, Harvey JG, Holland AJ. The use of the Meek technique in conjunction with cultured epithelial autograft in the management of major paediatric burns. Burns. 2013;39(4):674–9.

    Article  PubMed  Google Scholar 

  102. Braye F, Oddou L, Bertin-Maghit M, Belgacem S, Damour O, Spitalier P, Guillot M, Bouchard C, Gueugniaud PY, Goudeau M, Petit P, Tissot E. Widely meshed autograft associated with cultured autologous epithelium for the treatment of major burns in children: report of 12 cases. Eur J Pediatr Surg. 2000;10(1):35–40.

    Article  CAS  PubMed  Google Scholar 

  103. James SE, Booth S, Dheansa B, Mann DJ, Reid MJ, Shevchenko RV, Gilbert PM. Sprayed cultured autologous keratinocytes used alone or in combination with meshed autografts to accelerate wound closure in difficult-to-heal burns patients. Burns. 2010;36(3):e10–20.

    Article  PubMed  Google Scholar 

  104. Meek CP. Successful microdermagrafting using the Meek-Wall microdermatome. Am J Surg. 1958;96(4):557–8.

    Article  CAS  PubMed  Google Scholar 

  105. Zhang ML, Wang CY, Chang ZD, Cao DX, Han X. Microskin grafting. II. Clinical report. Burns Incl Therm Inj. 1986;12(8):544–8.

    Article  CAS  PubMed  Google Scholar 

  106. Zhang ML, Chang ZD, Wang CY, Fang CH. Microskin grafting in the treatment of extensive burns: a preliminary report. J Trauma. 1988;28(6):804–7.

    Article  CAS  PubMed  Google Scholar 

  107. Kreis RW, Mackie DP, Vloemans AW, Hermans RP, Hoekstra MJ. Widely expanded postage stamp skin grafts using a modified Meek technique in combination with an allograft overlay. Burns. 1993;19(2):142–5.

    Article  CAS  PubMed  Google Scholar 

  108. Kreis RW, Mackie DP, Hermans RR, Vloemans AR. Expansion techniques for skin grafts: comparison between mesh and Meek island (sandwich-) grafts. Burns. 1994;20(Suppl 1):S39–42.

    Article  PubMed  Google Scholar 

  109. Raff T, Hartmann B, Wagner H, Germann G. Experience with the modified Meek technique. Acta Chir Plast. 1996;38(4):142–6.

    CAS  PubMed  Google Scholar 

  110. McHeik JN, Barrault C, Levard G, Morel F, Bernard FX, Lecron JC. Epidermal healing in burns: autologous keratinocyte transplantation as a standard procedure: update and perspective. Plast Reconstr Surg Glob Open. 2014;2(9):e218.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Lumenta DB, Kamolz LP, Frey M. Adult burn patients with more than 60% TBSA involved-Meek and other techniques to overcome restricted skin harvest availability—the Viennese Concept. J Burn Care Res. 2009;30(2):231–42.

    Article  PubMed  Google Scholar 

  112. Zermani RG, Zarabini A, Trivisonno A. Micrografting in the treatment of severely burned patients. Burns. 1997;23(7–8):604–7.

    Article  CAS  PubMed  Google Scholar 

  113. Lari AR, Gang RK. Expansion technique for skin grafts (Meek technique) in the treatment of severely burned patients. Burns. 2001;27(1):61–6.

    Article  CAS  PubMed  Google Scholar 

  114. Lee SS, Tsai CC, Lai CS, Lin SD. An easy method for preparation of postage stamp autografts. Burns. 2000;26(8):741–9.

    Article  CAS  PubMed  Google Scholar 

  115. Lee SS, Lin TM, Chen YH, Lin SD, Lai CS. “Flypaper technique” a modified expansion method for preparation of postage stamp autografts. Burns. 2005;31(6):753–7.

    Article  PubMed  Google Scholar 

  116. Lee SS, Chen YH, Sun IF, Chen MC, Lin SD, Lai CS. “Shift to right flypaper technique” a refined method for postage stamp autografting preparation. Burns. 2007;33(6):764–9.

    Article  PubMed  Google Scholar 

  117. Hackl F, Bergmann J, Granter SR, Koyama T, Kiwanuka E, Zuhaili B, Pomahac B, Caterson EJ, Junker JP, Eriksson E. Epidermal regeneration by micrograft transplantation with immediate 100fold expansion. Plast Reconstr Surg. 2012;129(3):443e–52.

    Article  PubMed  CAS  Google Scholar 

  118. Danks RR, Lairet K. Innovations in caring for a large burn in the Iraq war zone. J Burn Care Res. 2010;31(4):665–9.

    Article  PubMed  Google Scholar 

  119. Dorai AA, Lim CK, Fareha AC, Halim AS. Cultured epidermal autografts in combination with MEEK Micrografting technique in the treatment of major burn injuries. Med J Malaysia. 2008;63(Suppl A):44.

    PubMed  Google Scholar 

  120. Papp A, Harma M. A collagen based dermal substitute and the modified Meek technique in extensive burns. Report of three cases. Burns. 2003;29(2):167–71.

    Article  PubMed  Google Scholar 

  121. Kopp J, Magnus Noah E, Rubben A, Merk HF, Pallua N. Radical resection of giant congenital melanocytic nevus and reconstruction with meek-graft covered integra dermal template. Dermatol Surg. 2003;29(6):653–7.

    PubMed  Google Scholar 

  122. Butler KL, Goverman J, Ma H, Fischman A, Yu YM, Bilodeau M, Rad AM, Bonab AA, Tompkins RG, Fagan SP. Stem cells and burns: review and therapeutic implications. J Burn Care Res. 2010;31(6):874–81.

    Article  PubMed  Google Scholar 

  123. Sun BK, Siprashvili Z, Khavari PA. Advances in skin grafting and treatment of cutaneous wounds. Science. 2014;346(6212):941–5.

    Article  CAS  PubMed  Google Scholar 

  124. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  CAS  PubMed  Google Scholar 

  125. Yamanaka S. The winding road to pluripotency (Nobel Lecture). Angew Chem. 2013;52(52):13900–9.

    Article  CAS  Google Scholar 

  126. Garber K. RIKEN suspends first clinical trial involving induced pluripotent stem cells. Nat Biotechnol. 2015;33(9):890–1.

    Article  CAS  PubMed  Google Scholar 

  127. Charruyer A, Ghadially R. Stem cells and tissue-engineered skin. Skin Pharmacol Physiol. 2009;22(2):55–62.

    Article  CAS  PubMed  Google Scholar 

  128. Ma D, Chua AW, Yang E, Teo P, Ting Y, Song C, Lane EB, Lee ST. Breast cancer resistance protein identifies clonogenic keratinocytes in human interfollicular epidermis. Stem Cell Res Ther. 2015;6:43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Mavilio F, Pellegrini G, Ferrari S, Di Nunzio F, Di Iorio E, Recchia A, Maruggi G, Ferrari G, Provasi E, Bonini C, Capurro S, Conti A, Magnoni C, Giannetti A, De Luca M. Correction of junctional epidermolysis bullosa by transplantation of genetically modified epidermal stem cells. Nat Med. 2006;12(12):1397–402.

    Article  CAS  PubMed  Google Scholar 

  130. Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell. 2001;104(2):233–45.

    Article  CAS  PubMed  Google Scholar 

  131. Claudinot S, Nicolas M, Oshima H, Rochat A, Barrandon Y. Long-term renewal of hair follicles from clonogenic multipotent stem cells. Proc Natl Acad Sci U S A. 2005;102(41):14677–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Charbord P. Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther. 2010;21(9):1045–56.

    Article  CAS  PubMed  Google Scholar 

  133. Miki T, Mitamura K, Ross MA, Stolz DB, Strom SC. Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. J Reprod Immunol. 2007;75(2):91–6.

    Article  CAS  PubMed  Google Scholar 

  134. Kita K, Gauglitz GG, Phan TT, Herndon DN, Jeschke MG. Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev. 2010;19(4):491–502.

    Article  CAS  PubMed  Google Scholar 

  135. Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007;25(6):1384–92.

    Article  CAS  PubMed  Google Scholar 

  136. Zhang X, Hirai M, Cantero S, Ciubotariu R, Dobrila L, Hirsh A, Igura K, Satoh H, Yokomi I, Nishimura T, Yamaguchi S, Yoshimura K, Rubinstein P, Takahashi TA. Isolation and characterization of mesenchymal stem cells from human umbilical cord blood: reevaluation of critical factors for successful isolation and high ability to proliferate and differentiate to chondrocytes as compared to mesenchymal stem cells from bone marrow and adipose tissue. J Cell Biochem. 2011;112(4):1206–18.

    Article  CAS  PubMed  Google Scholar 

  137. Driskell RR, Clavel C, Rendl M, Watt FM. Hair follicle dermal papilla cells at a glance. J Cell Sci. 2011;124(Pt 8):1179–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Richardson GD, Arnott EC, Whitehouse CJ, Lawrence CM, Hole N, Jahoda CA. Cultured cells from the adult human hair follicle dermis can be directed toward adipogenic and osteogenic differentiation. J Invest Dermatol. 2005;124(5):1090–1.

    Article  CAS  PubMed  Google Scholar 

  139. Ma D, Kua JE, Lim WK, Lee ST, Chua AW. In vitro characterization of human hair follicle dermal sheath mesenchymal stromal cells and their potential in enhancing diabetic wound healing. Cytotherapy. 2015;17(8):1036–51.

    Article  CAS  PubMed  Google Scholar 

  140. Fathke C, Wilson L, Hutter J, Kapoor V, Smith A, Hocking A, Isik F. Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells. 2004;22(5):812–22.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Kim DH, Yoo KH, Choi KS, Choi J, Choi SY, Yang SE, Yang YS, Im HJ, Kim KH, Jung HL, Sung KW, Koo HH. Gene expression profile of cytokine and growth factor during differentiation of bone marrow-derived mesenchymal stem cell. Cytokine. 2005;31(2):119–26.

    Article  CAS  PubMed  Google Scholar 

  142. Akino K, Mineda T, Akita S. Early cellular changes of human mesenchymal stem cells and their interaction with other cells. Wound Repair Regen. 2005;13(4):434–40.

    Article  PubMed  Google Scholar 

  143. Wu Y, Chen L, Scott PG, Tredget EE. Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells. 2007;25(10):2648–59.

    Article  CAS  PubMed  Google Scholar 

  144. Yoshikawa T, Mitsuno H, Nonaka I, Sen Y, Kawanishi K, Inada Y, Takakura Y, Okuchi K, Nonomura A. Wound therapy by marrow mesenchymal cell transplantation. Plast Reconstr Surg. 2008;121(3):860–77.

    Article  CAS  PubMed  Google Scholar 

  145. Hanson SE, Kleinbeck KR, Cantu D, Kim J, Bentz ML, Faucher LD, Kao WJ, Hematti P. Local delivery of allogeneic bone marrow and adipose tissue-derived mesenchymal stromal cells for cutaneous wound healing in a porcine model. J Tissue Eng Regen Med. 2016;10(2):E90–E100.

    Article  CAS  PubMed  Google Scholar 

  146. English K. Mechanisms of mesenchymal stromal cell immunomodulation. Immunol Cell Biol. 2013;91(1):19–26.

    Article  CAS  PubMed  Google Scholar 

  147. Mansilla E, Aquino VD, Roque G, Tau JM, Maceira A. Time and regeneration in burns treatment: heading into the first worldwide clinical trial with cadaveric mesenchymal stem cells. Burns. 2012;38(3):450–2.

    Article  PubMed  Google Scholar 

  148. Mansilla E, Marin G, Berges M, Scafatti S, Rivas J, Nunez A, Menvielle M, Lamonega R, Gardiner C, Drago H, Sturla F, Portas M, Bossi S, et al. Cadaveric bone marrow mesenchymal stem cells: first experience treating a patient with large severe burns. Burns Trauma. 2015;3:17.

    Article  PubMed  PubMed Central  Google Scholar 

  149. U.S. National Library of Medicine. Clinical Trials.gov. https://clinicaltrials.gov/ct2/home. Accessed 10 Nov 2015.

  150. Karri VV, Kuppusamy G, Talluri SV, Yamjala K, Mannemala SS, Malayandi R. Current and emerging therapies in the management of diabetic foot ulcers. Curr Med Res Opin. 2015;32(3):519–42.

    Article  CAS  Google Scholar 

  151. Chua A, Song C, Chai A, Chan L, Tan KC. The impact of skin banking and the use of its cadaveric skin allografts for severe burn victims in Singapore. Burns. 2004;30(7):696–700.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chua, A.W.C., Saphira, C.F., Chong, S.J. (2019). Skin Tissue Engineering in Severe Burns: A Review on Its Therapeutic Applications. In: Duscher, D., Shiffman, M.A. (eds) Regenerative Medicine and Plastic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19962-3_9

Download citation

Publish with us

Policies and ethics