Skip to main content

Bone Tissue Engineering Challenges in Craniofacial Reconstructive Surgeries

  • Chapter
  • First Online:
Regenerative Medicine and Plastic Surgery

Abstract

Craniofacial deformities can be categorized into congenital, traumatic, and cancerous ones. The author presents an overview of craniofacial defects, the available therapies, tissue engineering approach, scaffolds, polymers, ceramics, cells, and growth factors. Defects in the craniofacial region have to be considered as critical to be reconstructed. Tissue engineering seems to be a much better approach than others since it does not result in donor site morbidity and does not have the problem of the lack of suitable source in terms of quality and quantity. Although a lot of work and experimental studies have been carried out in this regard, there is a broad range of studies that remain and hoped to be done for finding the best cure for the problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. International Statistical Classification of Diseases and Related Health Problems 10th Revision (ICD-10)-WHO Version for 2016 http://apps.who.int/classifications/icd10/browse/2016/en#/Q75 Accessed 3/15/18.

  2. Wolford LM. Craniofacial deformities. 2017 http://www.drlarrywolford.com/craniofacial-deformities. Accessed 3/16/18.

  3. Sanan A, Haines S. Repairing holes in the head: a history of cranioplasty. Neurosurgery. 1997;40(3):588–603.

    CAS  PubMed  Google Scholar 

  4. Elsalanty M, Genecov D. Bone grafts in craniofacial surgery. Craniomaxillofac Trauma Reconstr. 2009;2(03):125–34.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Smith BT, Shum J, Wong M, Mikos AG, Young S. Bone tissue engineering challenges in oral & maxillofacial surgery. Adv Exp Med Biol. 2015;881:57–78.

    Article  CAS  PubMed  Google Scholar 

  6. Bauer T, Muschler G. Bone graft materials. Clin Orthopaed Relat Res. 2000;371:10–27.

    Article  Google Scholar 

  7. Khan S, Cammisa F, Sandhu H, Diwan A, Girardi F, Lane J. The biology of bone grafting. J Am Acad Orthopaed Surg. 2005;13(1):77–86.

    Article  Google Scholar 

  8. Laurencin CT, El-Amin SF. Xenotransplantation in orthopedic surgery. J Am Acad Orthop Surg. 2008;16:4–8.

    Article  PubMed  Google Scholar 

  9. Dell P, Burchardt H, Glowczewskie F. A roentgenographic, biomechanical, and histological evaluation of vascularized and non-vascularized segmental fibular canine autografts. J Bone Joint Surg. 1985;67(1):105–12.

    Article  CAS  PubMed  Google Scholar 

  10. Goldberg V, Stevenson S. Natural history of autografts and allografts. Clin Orthopaed Relat Res. 1987;(225):7–16.

    Google Scholar 

  11. Stevenson S, Li X, Davy D, Klein L, Goldberg V. Critical biological determinants of incorporation of non-vascularized cortical bone grafts. Quantification of a complex process and structure. J Bone Joint Surg. 1997;79(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  12. Kim MR, Donoff RB. Critical analysis of mandibular reconstruction using AO reconstruction plates. J Oral Maxillofac Surg. 1992;50:1152–7.

    Article  CAS  PubMed  Google Scholar 

  13. Ilankovan V, Jackson I. Experience in the use of calvarial bone grafts in orbital reconstruction. Br J Oral Maxillofac Surg. 1992;30(2):92–6.

    Article  CAS  PubMed  Google Scholar 

  14. Demergasso F, Piazza M. Trapezius myocutaneous flap in reconstructive surgery for head and neck cancer: An original technique. Am J Surg. 1979;138(4):533–6.

    Article  CAS  PubMed  Google Scholar 

  15. Taggard D, Menezes A. Successful use of rib grafts for cranioplasty in children. Pediatr Neurosurg. 2001;34(3):149–55.

    Article  CAS  PubMed  Google Scholar 

  16. Schwartz M, Cohen J, Meltzer T, Wheatley M, McMenomey S, Horgan M, Kellogg J, Delashaw J. Use of the radial forearm microvascular free-flap graft for cranial base reconstruction. J Neurosurg. 1999;90(4):651–5.

    Article  CAS  PubMed  Google Scholar 

  17. McClintock HG, Dingman RO. The repair of cranial defects with iliac bone. Surgery. 1951;30(6):955–63.

    CAS  PubMed  Google Scholar 

  18. David D, Tan E, Katsaros J, Sheen R. Mandibular reconstruction with vascularized iliac crest. Plast Reconstr Surg. 1988;82(5):792–801.

    Article  CAS  PubMed  Google Scholar 

  19. Hughes C, Revington P. The proximal tibia donor site in cleft alveolar bone grafting: experience of 75 consecutive cases. J Craniomaxillofac Surg. 2002;30(1):12–6.

    Article  PubMed  Google Scholar 

  20. Tessier P, Kawamoto H, Matthews D, Posnick J, Raulo Y, Tulasne J, Wolfe S. Taking tibial grafts in the diaphysis and upper epiphysis--tools and techniques: IV. A 650-case experience in maxillofacial and craniofacial surgery. Plast Reconstr Surg. 2005;116(5 Suppl):47S–53S.

    Article  CAS  PubMed  Google Scholar 

  21. Tideman H. Fibula free flap: A new method of mandible reconstruction. Int J Oral Maxillofac Surg. 1990;19(1):61.

    Google Scholar 

  22. Schusterman M, Reece G, Miller M, Harris S, Urken M. The osteocutaneous free fibula flap. Plast Reconstr Surg. 1992;90(5):794–6.

    Article  Google Scholar 

  23. Ariyan S. The pectoralis major myocutaneous flap a versatile flap for reconstruction in the head and neck. Plast Reconstr Surg. 1979;63(1):73–81.

    Article  CAS  PubMed  Google Scholar 

  24. Rossi G, Arrigoni G. Reimplantation of the mandibular condyle in cases of intraoral resection and reconstruction of the mandible. J Maxillofac Surg. 1979;7:1–5.

    Article  CAS  PubMed  Google Scholar 

  25. Schimming RM, Schmelzeisen R. Tissue-engineered bone for maxillary sinus augmentation. J Oral Maxillofac Surg. 2004;62(6):724–9.

    Article  PubMed  Google Scholar 

  26. Payne K, Balasundaram I, Deb S, Di Silvio L, Fan K. Tissue engineering technology and its possible applications in oral and maxillofacial surgery. Br J Oral Maxillofac Surg. 2014;52(1):7–15.

    Article  PubMed  Google Scholar 

  27. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(80):920–6.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou H, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011;7(7):2769–81.

    Article  CAS  PubMed  Google Scholar 

  29. Yang S, Leong K, Du Z, Chua C. The design of scaffolds for use in tissue engineering. Part I. traditional factors. Tissue Eng. 2001;7(6):679–89.

    Article  CAS  PubMed  Google Scholar 

  30. Cohen S, Baño M, Cima L, Allcock H, Vacanti J, Vacanti C, Langer R. Design of synthetic polymeric structures for cell transplantation and tissue engineering. Clin Mater. 1993;13(1–4):3–10.

    Article  CAS  PubMed  Google Scholar 

  31. Whang K, Healy K, Elenz D, Nam E, Tsai D, Thomas C, Nuber G, Glorieux F, Travers R, Sprague S. Engineering bone regeneration with bioabsorbable scaffolds with novel microarchitecture. Tissue Eng. 1999;5(1):35–51.

    Article  CAS  PubMed  Google Scholar 

  32. Liu X, Ma P. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng. 2004;32(3):477–86.

    Article  PubMed  Google Scholar 

  33. Ferreira AM, Gentile P, Chiono V, Ciardelli G. Collagen for bone tissue engineering. Acta Biomater. 2012;7(6):3191–200.

    Article  CAS  Google Scholar 

  34. Gelse K. Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003;55(12):1531–46.

    Article  CAS  PubMed  Google Scholar 

  35. Brodsky B, Eikenberry EF. Characterization of fibrous forms of collagen. In: Leon W, Cunningham DWF, editors. Methods in enzymology. NewYork: Academic Press; 1982. p. 127–74.

    Google Scholar 

  36. Glowacki J, Mizuno S. Collagen scaffolds for tissue engineering. Biopolymers. 2008;89(5):338–44.

    Article  CAS  PubMed  Google Scholar 

  37. Miyata T, Taira T, Noishiki Y. Collagen engineering for biomaterial use. Clin Mater. 1992;9(3–4):139–48.

    Article  CAS  PubMed  Google Scholar 

  38. Solchaga L, Yoo J, Lundberg M, Dennis J, Huibregtse B, Goldberg V, Caplan A. Hyaluronan-based polymers in the treatment of osteochondral defects. J Orthopaed Res. 2000;18(5):773–80.

    Article  CAS  Google Scholar 

  39. Di Martino A, Sittinger M, Risbud M. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26(30):5983–90.

    Article  PubMed  CAS  Google Scholar 

  40. Abukawa H, Shin M, Williams W, Vacanti J, Kaban L, Troulis M. Reconstruction of mandibular defects with autologous tissue-engineered bone. J Oral Maxillofac Surg. 2004;62(5):601–6.

    Article  PubMed  Google Scholar 

  41. Ren T, Ren J, Jia X, Pan K. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds. J Biomed Mater Res Part A. 2005;74A(4):562–9.

    Article  CAS  Google Scholar 

  42. Rai B, Ho K, Lei Y, Si-Hoe K, Jeremy Teo C, Yacob K, Chen F, Ng F, Teoh S. Polycaprolactone-20% tricalcium phosphate scaffolds in combination with platelet-rich plasma for the treatment of critical-sized defects of the mandible: A Pilot Study. J Oral Maxillofac Surg. 2007;65(11):2195–205.

    Article  PubMed  Google Scholar 

  43. Schuckert K, Jopp S, Teoh S. Mandibular defect reconstruction using three-dimensional polycaprolactone scaffold in combination with platelet-rich plasma and recombinant human bone morphogenetic protein-2: de novosynthesis of bone in a single case. Tissue Eng Part A. 2009;15(3):493–9.

    Article  CAS  PubMed  Google Scholar 

  44. Schliephake H, Weich H, Dullin C, Gruber R, Frahse S. Mandibular bone repair by implantation of rhBMP-2 in a slow release carrier of polylactic acid—an experimental study in rats. Biomaterials. 2008;29(1):103–10.

    Article  CAS  PubMed  Google Scholar 

  45. Holmes RE. Osteoconduction in hydroxyapatite-based materials. In: Brighton CT, Friedlaender G, Lane JM, editors. Bone formation and repair. Rosemont: American Academy of Orthopedic Surgeons; 1994. p. 355–65.

    Google Scholar 

  46. Heughebaert M, LeGeros R, Gineste M, Guilhem A, Bonel G. Physicochemical characterization of deposits associated with HA ceramics implanted in nonosseous sites. J Biomed Mater Res. 1988;22(S14):257–68.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang X, Zhou P, Zhang J, Chen W, Wu C. A study of HA ceramics and its osteogenesis. In: Ravaglioli A, Krahewsky A, editors. Bioceramics and the human body. London: Elsevier Applied Science; 1991. p. 408–16.

    Google Scholar 

  48. Yuan HP, Kurashina K, de Bruijn JD, Li Y, de Groot K, Zhang X. A preliminary study on osteoinduction of two kinds of calcium phosphate ceramics. Biomaterials. 1999;20:1799–806.

    Article  CAS  PubMed  Google Scholar 

  49. Oonishi H, Kutrshitani S, Yasukawa E, Iwaki H, Hench LL, Wilson J, Tsuji E, Sugihara T. Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin Orthop Relat Res. 1997;334:316–25.

    Article  Google Scholar 

  50. Li S, De Wijn J, Layrolle P, De Groot K. Synthesis of macroporous hydroxyapatite scaffolds for bone tissue engineering. J Biomed Mater Res. 2002;61(1):109–20.

    Article  CAS  PubMed  Google Scholar 

  51. Chen Q, Thompson I, Boccaccini A. 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27(11):2414–25.

    Article  CAS  PubMed  Google Scholar 

  52. Gerhardt L, Jell G, Boccaccini A. Titanium dioxide (TiO2) nanoparticles filled poly(d, l lactid acid) (PDLLA) matrix composites for bone tissue engineering. J Mater Sci Mater Med. 2007;18(7):1287–98.

    Article  CAS  PubMed  Google Scholar 

  53. Chen Q, Boccaccini A, Zhang H, Wang D, Edirisinghe M. Improved mechanical reliability of bone tissue engineering (zirconia) scaffolds by electrospraying. J Am Ceramic Soc. 2006;89(5):1534–9.

    Article  CAS  Google Scholar 

  54. Wilson J, Pigot GH, Schoen FJ, Hench LL. Toxicology and biocompatibility of bioglass. J Biomed Mater Res. 1981;15:805–11.

    Article  CAS  PubMed  Google Scholar 

  55. Hench LL, Splinter RJ, Allen WC. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res Symp. 1971;2(part 1):117–41.

    Article  Google Scholar 

  56. Hench LL, Paschall HA. Direct chemical bond of bioactive glass–ceramic materials to bone and muscle. J Biomed Mater Res Symp. 1973;4:25–42.

    Article  Google Scholar 

  57. Hench LL, Paschall HA. Histochemical response at a biomaterial’s interface. J Biomed Mater Res Symp. 1974;5(Part 1):49–64.

    Article  Google Scholar 

  58. Gatti AM, Valdre G, Andersson OH. Analysis of the in vivo reactions of a bioactive glass in soft and hard tissue. Biomaterials. 1994;15:208–12.

    Article  CAS  PubMed  Google Scholar 

  59. Clark AE, Hench LL. Calcium phosphate formation on sol–gel derived bioactive glasses. J Biomed Mater Res. 1994;28:693–8.

    Article  PubMed  Google Scholar 

  60. Hench LL. Sol–gel materials for bioceramic applications. Curr Opin Solid State Mater Sci. 1997;2:604–10.

    Article  CAS  Google Scholar 

  61. Hench LL, Wilson J. Surface-active biomaterials. Science. 1984;226:630–6.

    Article  CAS  PubMed  Google Scholar 

  62. Schwartzalder K, Somers AV. Method of making a porous shape of sintered refractory ceramic articles. United States Patent no. 3090094, 1963.

    Google Scholar 

  63. Cowin SC. Bone mechanics. Boca Raton, FL: CTC Press; 1989. p. 1–4.

    Google Scholar 

  64. Gibson LJ, Ashby MF. Cellular solids: structure and properties. 2nd ed. Oxford: Pergamon; 1999. p. 429–52.

    Google Scholar 

  65. Tonino A, Thèrin M, Doyle C. Hydroxyapatite-coated femoral stems. J Bone Joint Surg. 1999;81(1):148–54.

    Article  CAS  Google Scholar 

  66. Gauthier O, Bouler J, Aguado E, Pilet P, Daculsi G. Macroporous biphasic calcium phosphate ceramics: influence of macropore diameter and macroporosity percentage on bone ingrowth. Biomaterials. 1998;19(1-3):133–9.

    Article  CAS  PubMed  Google Scholar 

  67. Mao J, Giannobile W, Helms J, Hollister S, Krebsbach P, Longaker M, Shi S. Craniofacial tissue engineering by stem cells. J Dent Res. 2006;85(11):966–79.

    Article  CAS  PubMed  Google Scholar 

  68. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cell based therapies. Tissue Eng. 2001;7:211–28.

    Article  CAS  PubMed  Google Scholar 

  69. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13:4279–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, Dragoo JL, Ashjian P, Thomas B, Benhaim P, Chen I, Fraser J, Hedrick MH. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174:101–9.

    Article  PubMed  Google Scholar 

  71. Gimble JM, Guilak F. Differentiation potential of adipose derived adult stem (ADAS) cells. Curr Top Dev Biol. 2003;58:137–60.

    Article  PubMed  Google Scholar 

  72. Hicok KC, Du Laney TV, Zhou YS, Halvorsen YD, Hitt DC, Cooper LF, Gimble JM. Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng. 2004;10:371–80.

    Article  CAS  PubMed  Google Scholar 

  73. Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, Quarto N, Contag CH, Wu B, Longaker MT. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol. 2004;22:560–7.

    Article  CAS  PubMed  Google Scholar 

  74. Park H, Temenoff JS, Tabata Y, Caplan AI, Mikos AG. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials. 2007;28:3217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shang Q, Wang Z, Liu W, Shi Y, Cui L, Cao Y. Tissue-engineered bone repair of sheep cranial defects with autologous bone marrow stromal cells. J Craniofac Surg. 2001;12:586–93.

    Article  CAS  PubMed  Google Scholar 

  76. Okunieff P, Mester M, Wang J, Maddox T, Gong X, Tang D, Coffee M, Ding I. In vivo radioprotective effects of angiogenic growth factors on the small bowel of C3H mice. Radiat Res. 1998;150:204–11.

    Article  CAS  PubMed  Google Scholar 

  77. Okunieff P, Wang X, Rubin P, Finkelstein JN, Constine LS, Ding I. Radiation-induced changes in bone perfusion and angiogenesis. Int J Radiat Oncol Biol Phys. 1998;42:885–9.

    Article  CAS  PubMed  Google Scholar 

  78. Hock JM, Cannalis E. Platelet-derived growth factor enhances bone cell replication but not differentiated function of osteoblasts. Endocrinology. 1994;134:1423–8.

    Article  CAS  PubMed  Google Scholar 

  79. Schliephake H, Bertram H, Lindenmaier W, Rohde M, Mayer H, Planck H. In-vitro engineering of human bone marrow derived mesenchymal stem cells (MSC) for tissue engineered growth of bone. Int J Oral Maxillofac Surg. 1999;28(Suppl 1):107–8.

    Article  Google Scholar 

  80. Chung CP, Kim DK, Park YJ, Nam KH, Lee SJ. Biological effects of drug loaded biodegradable membranes for guided bone regeneration. J Periodontal Res. 1997;32:172–5.

    Article  CAS  PubMed  Google Scholar 

  81. Rutherford RB, Ryan ME, Kennedy JE, Tucker MM, Charette MF. Platelet-derived growth factor and dexamethasone combined with a collagen matrix induce regeneration of the periodontium in monkeys. J Clin Periodontol. 1993;20:537–44.

    Article  CAS  PubMed  Google Scholar 

  82. Schliephake H. Bone growth factors in maxillofacial skeletal reconstruction. Int J Oral Maxillofac Surg. 2002;31(5):469–84.

    Article  Google Scholar 

  83. Thaller SR, Salzhauer MA, Rubinstein AJ, Thion A, Tesluk H. Effect of insulin-like growth factor type I on critical size calvarial bone defects in irradiated rats. J Craniofac Surg. 1998;9:138–41.

    Article  CAS  PubMed  Google Scholar 

  84. Stefani CM, Machado MA, Sallum EA, Toledo S, Nocti HJR. Platelet derived growth factor/insulin-like growth factor-1 combination and bone regeneration around implants placed into extraction sockets: a histometric study in dogs. Implant Dent. 2000;9:126–31.

    Article  CAS  PubMed  Google Scholar 

  85. Nacti FHJ, Stefani CM, Machado MA, Sallum EA, Toledo S, Sallum AW. Histometric evaluation of bone regeneration around immediate implants partially in contact with bone: a pilot study in dogs. Implant Dent. 2000;9:321–8.

    Article  Google Scholar 

  86. Lynch SE, Buser D, Hernandez RA, Weber HP, Stich H, Fox CH, Williams RC. Effects of the plateletderived growth factor/insulin-like growth factor-I combination on bone regeneration around dental implants. Results of a pilot study in beagle dogs. J Periodontol. 1991;62:710–6.

    Article  CAS  PubMed  Google Scholar 

  87. Howell TH, Fiorellini JP, Paquette DW, Ofenbacher S, Giannobile WV, Lynch SE. A phase I/II trial to evaluate a combination of recombinant human platelet-derived growth factor-BB and recombinant human insulin-like growth factor-I in patients with periodontal disease. J Periodontal Res. 1997;68:1168–93.

    Google Scholar 

  88. Gao J, Symons AL, Bartold PM. Expression of transforming growth factor-beta 1 (TGF-beta 1) in the developing periodontium of rats. J Dent Res. 1998;77:1708–16.

    Article  CAS  PubMed  Google Scholar 

  89. Yamamoto M, Tabata Y, Hing L, Miyamoto S, Hashimoto N, Ikada Y. Bone regeneration by transforming growth factor-beta 1 released from a biodegradable hydrogel. J Control Release. 2000;64:133–42.

    Article  CAS  PubMed  Google Scholar 

  90. Hong L, Tabata Y, Niyamoto S, Yamada K, Aoyoma I, Tamura M, Hashimoto N, Ikada Y. Promoted bone healing at a rabbit skull gap between autologous bone fragment and the surrounding intact bone with biodegradable microspheres containing transforming growth factor-beta 1. Tissue Eng. 2000;6:331–40.

    Article  CAS  PubMed  Google Scholar 

  91. Sandhu HS, Kanim LE, Kabo JM, Toth JM, Zeegen EN, Liu D, Delemarter RB, Dawson EG. Effective doses of recombinant human bone morphogenetic protein-2 in experimental spinal fusion. Spine. 1996;21:2115–22.

    Article  CAS  PubMed  Google Scholar 

  92. Riley EH, Lane JM, Urist MR, Lyons KM, Lieberman JR. Bone morphogenetic protein-2: biology and applications. Clin Orthop. 1996;324:39–46.

    Article  Google Scholar 

  93. Higuchi T, Kinoshita A, Takahashi K, Oda S, Ishikawa I. Bone regeneration by recombinant human bone morphogenetic protein-2 in rat mandibular defects. an experimental model of defect filling. J Periodontol. 1999;70:1026–31.

    Article  CAS  PubMed  Google Scholar 

  94. Gerhart TN, Kirker-Head CA, Kriz MJ, Holtrop ME, Hennig GE, Hipp J, Schelling SH. Healing of segmental femoral defects in sheep using recombinant human bone morphogenetic protein. Clin Orthop. 1993;293:317–23.

    Google Scholar 

  95. Cook SD, Baffes GC, Wolfe MW, Sampath TK, Rueger DC. Recombinant human bone morphogenetic protein-7 induces healing in a canine long-bone segmental defect model. Clin Orthop. 1994;301:302–11.

    Article  Google Scholar 

  96. Bostrom M, Lane JM, Tomin E, Browne M, Berberian W, Turek T, Smith J, Woszeny J, Schildhauer T. Use of bone morphogenetic protein-2 in the rabbit ulnar nonunion model. Clin Orthop. 1996;327:272–82.

    Article  Google Scholar 

  97. Tozum TF, Demiralp B. Platelet-rich plasma: a promising innovation in dentistry. J Can Dent Assoc. 2003;69:664.

    PubMed  Google Scholar 

  98. Ramay H, Zhang M. Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering. Biomaterials. 2004;25(21):5171–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Jamshidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zargar, S.M., Jamshidi, N. (2019). Bone Tissue Engineering Challenges in Craniofacial Reconstructive Surgeries. In: Duscher, D., Shiffman, M.A. (eds) Regenerative Medicine and Plastic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19958-6_24

Download citation

Publish with us

Policies and ethics