Skip to main content

Iron Chelators & HIF-1α: A New Frontier for Skin Rejuvenation

  • Chapter
  • First Online:

Abstract

Advanced age brings changes to all components of the integumentary system with consequent signs of deterioration on epidermis, dermis, and hypodermis. During the aging process, skin gets progressively thinner and the blood capillaries of the dermis become sparse and more fragile, resulting in wrinkles and a paler, translucent appearance. Similar to chronic wounds, skin-aging is characterized by dysfunction of key cellular regulatory pathways. Recent evidence suggests that the same mechanisms, which hinder the physiologic healing response in chronic wounds, are the reason for impaired tissue homeostasis in aged skin. The Hypoxia Inducible Factor 1 alpha (HIF-1α) pathway represents one key-mechanism in both conditions. The HIF-1 pathway is significantly involved in tissue homeostasis and neovascularization. In this chapter, we describe the promising possibilities of a therapeutic modulation of hypoxia inducible signaling pathways by repurposing iron chelators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Montagna W. The evolution of human skin (?). J Hum Evol. 1985;14(1):3–22.

    Article  Google Scholar 

  2. Tissot FS, Boulter E, Estrach S, Feral CC. The body’s tailored suit: skin as a mechanical interface. Eur J Cell Biol. 2016;95(11):475–82.

    Article  CAS  PubMed  Google Scholar 

  3. Gniadecka M, Nielsen OF, Wessel S, Heidenheim M, Christensen DH, Wulf HC. Water and protein structure in photoaged and chronically aged skin. J Invest Dermatol. 1998;111(6):1129–33.

    Article  CAS  PubMed  Google Scholar 

  4. Triassi M, Petrella M, Villari P, Pavia M. Trends and some characteristics of female genital neoplasm mortality in the Campania Region. Ann Ig. 1990;2(4):251–62.

    CAS  PubMed  Google Scholar 

  5. Brooks-Wilson AR. Genetics of healthy aging and longevity. Hum Genet. 2013;132(12):1323–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sinclair DA, Guarente L. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell. 1997;91(7):1033–42.

    Article  CAS  PubMed  Google Scholar 

  7. Hershey D, Lee WE. Entropy, aging and death. Syst Res Behav Sci. 1987;4(4):269–81.

    Google Scholar 

  8. DiLoreto R, Murphy CT. The cell biology of aging. Mol Biol Cell. 2015;26(25):4524–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fisher GJ, Varani J, Voorhees JJ. Looking older: fibroblast collapse and therapeutic implications. Arch Dermatol. 2008;144(5):666–72.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Fries JF. Aging, natural death, and the compression of morbidity. Bull World Health Organ. 2002;80(3):245–50.

    PubMed  PubMed Central  Google Scholar 

  11. Berneburg M, Plettenberg H, Krutmann J. Photoaging of human skin. Photodermatol Photoimmunol Photomed. 2000;16(6):239–44.

    Article  CAS  PubMed  Google Scholar 

  12. Uitto J, Bernstein EF. Molecular mechanisms of cutaneous aging: connective tissue alterations in the dermis. J Invest Dermatol Symp Proc. 1998;3(1):41–4. Elsevier

    Google Scholar 

  13. Kosmadaki M, Gilchrest B. The role of telomeres in skin aging/photoaging. Micron. 2004;35(3):155–9.

    Article  CAS  PubMed  Google Scholar 

  14. Masaki H. Role of antioxidants in the skin: anti-aging effects. J Dermatol Sci. 2010;58(2):85–90.

    Article  CAS  PubMed  Google Scholar 

  15. Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Investig Dermatol. 2006;126(12):2565–75.

    Article  CAS  PubMed  Google Scholar 

  16. Benetos A, Okuda K, Lajemi M, Kimura M, Thomas F, Skurnick J, et al. Telomere length as an indicator of biological aging. Hypertension. 2001;37(2):381–5.

    Article  CAS  PubMed  Google Scholar 

  17. Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB. Telomere end-replication problem and cell aging. J Mol Biol. 1992;225(4):951–60.

    Article  CAS  PubMed  Google Scholar 

  18. Boccardi V, Paolisso G, Mecocci P. Nutrition and lifestyle in healthy aging: the telomerase challenge. Aging (Albany NY). 2016;8(1):12.

    Article  CAS  Google Scholar 

  19. Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, et al. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002;138(11):1462–70.

    Article  CAS  PubMed  Google Scholar 

  20. Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Quan T, Shao Y, He T, Voorhees JJ, Fisher GJ. Reduced expression of connective tissue growth factor (CTGF/CCN2) mediates collagen loss in chronologically aged human skin. J Invest Dermatol. 2010;130(2):415–24.

    Article  CAS  PubMed  Google Scholar 

  22. Quan T, Fisher GJ. Role of age-associated alterations of the dermal extracellular matrix microenvironment in human skin aging: a mini-review. Gerontology. 2015;61(5):427–34.

    Article  CAS  PubMed  Google Scholar 

  23. Heng JK, Aw DC, Tan KB. Solar elastosis in its papular form: uncommon, mistakable. Case Rep Dermatol. 2014;6(1):124–8.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rando TA. Stem cells, ageing and the quest for immortality. Nature. 2006;441(7097):1080–6.

    Article  CAS  PubMed  Google Scholar 

  25. Fujiwara T, Dohi T, Maan ZN, Rustad KC, Kwon SH, Padmanabhan J, et al. Age-associated intracellular superoxide dismutase deficiency potentiates dermal fibroblast dysfunction during wound healing. Exp Dermatol. 2019;28(4):485–92.

    Article  CAS  PubMed  Google Scholar 

  26. Fujiwara T, Duscher D, Rustad KC, Kosaraju R, Rodrigues M, Whittam AJ, et al. Extracellular superoxide dismutase deficiency impairs wound healing in advanced age by reducing neovascularization and fibroblast function. Exp Dermatol. 2016;25(3):206–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaisers W, Boukamp P, Stark H-J, Schwender H, Tigges J, Krutmann J, et al. Age, gender and UV-exposition related effects on gene expression in in vivo aged short term cultivated human dermal fibroblasts. PLoS One. 2017;12(5):e0175657.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Rinkevich Y, Walmsley GG, Hu MS, Maan ZN, Newman AM, Drukker M, et al. Skin fibrosis. Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science (New York, NY). 2015;348(6232):aaa2151.

    Article  CAS  Google Scholar 

  29. Huertas ACM, Schmelzer CE, Hoehenwarter W, Heyroth F, Heinz A. Molecular-level insights into aging processes of skin elastin. Biochimie. 2016;128:163–73.

    Article  CAS  Google Scholar 

  30. Qin Z, Balimunkwe R, Quan T. Age-related reduction of dermal fibroblast size up-regulates multiple matrix metalloproteinases as observed in aged human skin in vivo. Br J Dermatol. 2017;177(5):1337–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Freitas-Rodríguez S, Folgueras AR, López-Otín C. The role of matrix metalloproteinases in aging: tissue remodeling and beyond. Amsterdam: Elsevier; 2017.

    Google Scholar 

  32. Rezvani HR, Ali N, Nissen LJ, Harfouche G, De Verneuil H, Taïeb A, et al. HIF-1α in epidermis: oxygen sensing, cutaneous angiogenesis, cancer, and non-cancer disorders. J Investig Dermatol. 2011;131(9):1793–805.

    Article  CAS  PubMed  Google Scholar 

  33. Gosain A, DiPietro LA. Aging and wound healing. World J Surg. 2004;28(3):321–6.

    Article  PubMed  Google Scholar 

  34. Chang EI, Loh SA, Ceradini DJ, Chang EI, Lin SE, Bastidas N, et al. Age decreases endothelial progenitor cell recruitment through decreases in hypoxia-inducible factor 1alpha stabilization during ischemia. Circulation. 2007;116(24):2818–29.

    Article  CAS  PubMed  Google Scholar 

  35. Duscher D, Januszyk M, Maan ZN, Whittam AJ, Hu MS, Walmsley GG, et al. Comparison of the iron chelator deferoxamine and the hydroxylase inhibitor DMOG in aged and diabetic wound healing. Plast Reconstr Surg. 2015;116:2818–29.

    Google Scholar 

  36. Duscher D, Neofytou E, Wong VW, Maan ZN, Rennert RC, Inayathullah M, et al. Transdermal deferoxamine prevents pressure-induced diabetic ulcers. Proc Natl Acad Sci U S A. 2015;112(1):94–9.

    Article  CAS  PubMed  Google Scholar 

  37. Rezvani HR, Ali N, Nissen LJ, Harfouche G, de Verneuil H, Taieb A, et al. HIF-1alpha in epidermis: oxygen sensing, cutaneous angiogenesis, cancer, and non-cancer disorders. J Invest Dermatol. 2011;131(9):1793–805.

    Article  CAS  PubMed  Google Scholar 

  38. Rezvani HR, Ali N, Serrano-Sanchez M, Dubus P, Varon C, Ged C, et al. Loss of epidermal hypoxia-inducible factor-1alpha accelerates epidermal aging and affects re-epithelialization in human and mouse. J Cell Sci. 2011;124(Pt 24):4172–83.

    Article  CAS  PubMed  Google Scholar 

  39. Loh SA, Chang EI, Galvez MG, Thangarajah H, El-ftesi S, Vial IN, et al. SDF-1 alpha expression during wound healing in the aged is HIF dependent. Plast Reconstr Surg. 2009;123(2 Suppl):65S–75S.

    Article  CAS  PubMed  Google Scholar 

  40. Gould L, Abadir P, Brem H, Carter M, Conner-Kerr T, Davidson J, et al. Chronic wound repair and healing in older adults: current status and future research. J Am Geriatr Soc. 2015;63(3):427–38.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004;10(8):858–64.

    Article  CAS  PubMed  Google Scholar 

  42. Sarkar K, Fox-Talbot K, Steenbergen C, Bosch-Marce M, Semenza GL. Adenoviral transfer of HIF-1alpha enhances vascular responses to critical limb ischemia in diabetic mice. Proc Natl Acad Sci U S A. 2009;106(44):18769–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Walmsley GG, Maan ZN, Wong VW, Duscher D, Hu MS, Zielins ER, et al. Scarless wound healing: chasing the holy grail. Plast Reconstr Surg. 2015;135(3):907–17.

    Article  CAS  PubMed  Google Scholar 

  44. Duscher D, Maan ZN, Whittam AJ, Sorkin M, Hu MS, Walmsley GG, et al. Fibroblast-specific deletion of hypoxia inducible factor-1 critically impairs murine cutaneous neovascularization and wound healing. Plast Reconstr Surg. 2015;136(5):1004–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hong WX, Hu MS, Esquivel M, Liang GY, Rennert RC, McArdle A, et al. The role of hypoxia-inducible factor in wound healing. Adv Wound Care. 2014;3(5):390–9.

    Article  Google Scholar 

  46. Paik KJ, Maan ZN, Zielins ER, Duscher D, Whittam AJ, Morrison SD, et al. Short hairpin RNA silencing of PHD-2 improves neovascularization and functional outcomes in diabetic wounds and ischemic limbs. PLoS One. 2016;11(3):e0150927.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Maxwell PH, Wiesener MS, Chang G-W, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5.

    Article  CAS  PubMed  Google Scholar 

  48. Yu F, White SB, Zhao Q, Lee FS. Dynamic, site-specific interaction of hypoxia-inducible factor-1α with the von Hippel-Lindau tumor suppressor protein. Cancer Res. 2001;61(10):4136–42.

    CAS  PubMed  Google Scholar 

  49. Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ. Independent function of two destruction domains in hypoxia-inducible factor-α chains activated by prolyl hydroxylation. EMBO J. 2001;20(18):5197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 2001;294(5545):1337–40.

    Article  CAS  PubMed  Google Scholar 

  51. Ebert BL, Bunn HF. Regulation of transcription by hypoxia requires a multiprotein complex that includes hypoxia-inducible factor 1, an adjacent transcription factor, and p300/CREB binding protein. Mol Cell Biol. 1998;18(7):4089–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mahon PC, Hirota K, Semenza GL. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev. 2001;15(20):2675–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lando D, Peet DJ, Whelan DA, Gorman JJ, Whitelaw ML. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science. 2002;295(5556):858–61.

    Article  CAS  PubMed  Google Scholar 

  54. Bedogni B, Welford SM, Cassarino DS, Nickoloff BJ, Giaccia AJ, Powell MB. The hypoxic microenvironment of the skin contributes to Akt-mediated melanocyte transformation. Cancer Cell. 2005;8(6):443–54.

    Article  CAS  PubMed  Google Scholar 

  55. Rosenberger C, Solovan C, Rosenberger AD, Jinping L, Treudler R, Frei U, et al. Upregulation of hypoxia-inducible factors in normal and psoriatic skin. J Invest Dermatol. 2007;127(10):2445–52.

    Article  CAS  PubMed  Google Scholar 

  56. Distler O, Distler JH, Scheid A, Acker T, Hirth A, Rethage J, et al. Uncontrolled expression of vascular endothelial growth factor and its receptors leads to insufficient skin angiogenesis in patients with systemic sclerosis. Circ Res. 2004;95(1):109–16.

    Article  CAS  PubMed  Google Scholar 

  57. Liu L, Marti GP, Wei X, Zhang X, Zhang H, Liu YV, et al. Age-dependent impairment of HIF-1alpha expression in diabetic mice: Correction with electroporation-facilitated gene therapy increases wound healing, angiogenesis, and circulating angiogenic cells. J Cell Physiol. 2008;217(2):319–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cho YS, Bae JM, Chun YS, Chung JH, Jeon YK, Kim IS, et al. HIF-1alpha controls keratinocyte proliferation by up-regulating p21(WAF1/Cip1). Biochim Biophys Acta. 2008;1783(2):323–33.

    Article  CAS  PubMed  Google Scholar 

  59. Michaylira CZ, Nakagawa H. Hypoxic microenvironment as a cradle for melanoma development and progression. Cancer Biol Ther. 2006;5(5):476–9.

    Article  CAS  PubMed  Google Scholar 

  60. Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology. 2009;24(2):97–106.

    Article  CAS  PubMed  Google Scholar 

  61. Biswas S, Roy S, Banerjee J, Hussain SR, Khanna S, Meenakshisundaram G, et al. Hypoxia inducible microRNA 210 attenuates keratinocyte proliferation and impairs closure in a murine model of ischemic wounds. Proc Natl Acad Sci U S A. 2010;107(15):6976–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Elson DA, Ryan HE, Snow JW, Johnson R, Arbeit JM. Coordinate up-regulation of hypoxia inducible factor (HIF)-1alpha and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Res. 2000;60(21):6189–95.

    CAS  PubMed  Google Scholar 

  63. Semenza GL. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci. 2012;33(4):207–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Elson DA, Thurston G, Huang LE, Ginzinger DG, McDonald DM, Johnson RS, et al. Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1alpha. Genes Dev. 2001;15(19):2520–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim KS, Rajagopal V, Gonsalves C, Johnson C, Kalra VK. A novel role of hypoxia-inducible factor in cobalt chloride- and hypoxia-mediated expression of IL-8 chemokine in human endothelial cells. J Immunol. 2006;177(10):7211–24.

    Article  CAS  PubMed  Google Scholar 

  66. Fitsialos G, Bourget I, Augier S, Ginouves A, Rezzonico R, Odorisio T, et al. HIF1 transcription factor regulates laminin-332 expression and keratinocyte migration. J Cell Sci. 2008;121(Pt 18):2992–3001.

    Article  CAS  PubMed  Google Scholar 

  67. Ryan MC, Christiano AM, Engvall E, Wewer UM, Miner JH, Sanes JR, et al. The functions of laminins: lessons from in vivo studies. Matrix Biol. 1996;15(6):369–81.

    Article  CAS  PubMed  Google Scholar 

  68. Watt FM. Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J. 2002;21(15):3919–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rezvani HR, Dedieu S, North S, Belloc F, Rossignol R, Letellier T, et al. Hypoxia-inducible factor-1alpha, a key factor in the keratinocyte response to UVB exposure. J Biol Chem. 2007;282(22):16413–22.

    Article  CAS  PubMed  Google Scholar 

  70. Duscher D, Januszyk M, Maan ZN, Whittam AJ, Hu MS, Walmsley GG, et al. Comparison of the hydroxylase inhibitor dimethyloxalylglycine and the iron chelator deferoxamine in diabetic and aged wound healing. Plastic Reconstr Surg. 2017;139(3):695e–706e.

    Article  CAS  Google Scholar 

  71. Pagani A, Aitzetmüller MM, Brett EA, König V, Wenny R, Thor D, et al. Skin Rejuvenation through HIF-1alpha modulation. Plast Reconstr Surg. 2018;141(4):600e–7e.

    Article  CAS  PubMed  Google Scholar 

  72. Schofield CJ, Ratcliffe PJ. Oxygen sensing by HIF hydroxylases. Nat Rev Mol Cell Biol. 2004;5(5):343–54.

    Article  CAS  PubMed  Google Scholar 

  73. Peet D, Linke S. Regulation of HIF: asparaginyl hydroxylation. Novartis Found Symp. 2006;272:37–49. discussion -53, 131–40

    Google Scholar 

  74. Kuo KH, Mrkobrada M. A systematic review and meta-analysis of deferiprone monotherapy and in combination with deferoxamine for reduction of iron overload in chronically transfused patients with beta-thalassemia. Hemoglobin. 2014;38(6):409–21.

    Article  CAS  PubMed  Google Scholar 

  75. Moayedi Esfahani BA, Reisi N, Mirmoghtadaei M. Evaluating the safety and efficacy of silymarin in beta-thalassemia patients: a review. Hemoglobin. 2015;39(2):75–80.

    Article  CAS  PubMed  Google Scholar 

  76. Ram M, Singh V, Kumawat S, Kumar D, Lingaraju MC, Uttam Singh T, et al. Deferoxamine modulates cytokines and growth factors to accelerate cutaneous wound healing in diabetic rats. Eur J Pharmacol. 2015;764:9–21.

    Article  CAS  PubMed  Google Scholar 

  77. Temiz G, Sirinoglu H, Yesiloglu N, Filinte D, Kacmaz C. Effects of deferoxamine on fat graft survival. Facial Plastic Surg. 2016;32(4):438–43.

    Article  CAS  Google Scholar 

  78. Wang GL, Semenza GL. Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Blood. 1993;82(12):3610–5.

    Article  CAS  PubMed  Google Scholar 

  79. Origa R, Bina P, Agus A, Crobu G, Defraia E, Dessì C, et al. Combined therapy with deferiprone and desferrioxamine in thalassemia major. Haematologica. 2005;90(10):1309–14.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pagani, A., Aitzetmüller, M.M., Duscher, D. (2019). Iron Chelators & HIF-1α: A New Frontier for Skin Rejuvenation. In: Duscher, D., Shiffman, M.A. (eds) Regenerative Medicine and Plastic Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19958-6_19

Download citation

Publish with us

Policies and ethics