Skip to main content

Extending Volunteered Geographic Information (VGI) with Geospatial Software as a Service: Participatory Asset Mapping Infrastructures for Urban Health

  • Chapter
  • First Online:
Geospatial Technologies for Urban Health

Abstract

Community asset mapping is an essential step in public health practice for identifying community strengths, needs, and urban health intervention strategies. Community-based Volunteered Geographic Information (VGI) could facilitate customized asset mapping to link free and accessible technologies with community needs in a mutually shared, knowledge-producing process. To address this issue, we demonstrate a participatory asset mapping infrastructure developed with a Chicago community using VGI concepts, participatory design principles, and geospatial Software as a Service (SaaS) using a suite of free and/or open tools. Participatory mapping infrastructures using decentralized system architecture can link data and mapping services, transforming siloed datasets to integrated systems managed and shared across multiple organizations. The final asset mapping infrastructure includes a flexible and cloud-based data management system, an interactive web map, and community asset data stream. By allowing for a dynamic, reproducible, adaptive, and participatory asset mapping system, health systems infrastructures can further support community health improvement frameworks by facilitating shared data and decision support implementations across health partners. Such “community-engaged VGI” is essential in integrating previously siloed data systems and facilitating means of collaboration with health systems in urban health research and practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ananthakrishnan, R., Chard, K., Foster, I., & Tuecke, S. (2015). Globus platform-as-a-service for collaborative science applications. Concurrency and Computation: Practice and Experience, 27(2), 290–305.

    Article  Google Scholar 

  • Bittner, C., Glasze, G., & Turk, C. (2013). Tracing contingencies: Analyzing the political in assemblages of web 2.0 cartographies. GeoJournal, 78(6), 935–948.

    Article  Google Scholar 

  • Bote-Lorenzo, M. L., Dimitriadis, Y. A., & G mez-Sánchez, E. (2004). Grid characteristics and uses: A grid definition. In Grid computing (pp. 291–298). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Boulos, M. N. K., Resch, B., Crowley, D., Breslin, J., Sohn, G., Burtner, R., et al. (2011). Crowdsourcing, citizen sensing and sensor web technologies for public and environmental health surveillance and crisis management: Trends, OGC standards and application examples. International Journal of Health, 10, 67.

    Google Scholar 

  • Brandusescu, A., & Sieber, R. E. (2018). The spatial knowledge politics (SKP) of crisis mapping for community development. GeoJournal, 1, 1–16.

    Google Scholar 

  • Brown, G., Rhodes, J., & Dade, M. (2018). An evaluation of participatory mapping methods to assess urban park benefits. Landscape and Urban Planning, 178, 18–31.

    Article  Google Scholar 

  • Burns, R. (2015). Rethinking big data in digital humanitarianism: Practices, epistemologies, and social relations. GeoJournal, 80(4), 477–490.

    Article  Google Scholar 

  • Center for Disease and Control (CDC). (2015). Community health improvement navigator.

    Google Scholar 

  • Chicago Department of Public Health. (2017). Chicago health atlas resources. https://www.chicagohealthatlas.org/resources.

  • Cinnamon, J., & Schuurman, N. (2013). Confronting the data-divide in a time of spatial turns and volunteered geographic information. GeoJournal, 78(4), 657–674.

    Article  Google Scholar 

  • Cochrane, L., & Corbett, J. (2018). Participatory mapping. Handbook of communication for development and social change, 1–9.

    Google Scholar 

  • Cochrane, L., Corbett, J., Evans, M., & Gill, M. (2017). Searching for social justice in GIScience publications. Cartography and Geographic Information Science, 44(6), 507–520.

    Article  Google Scholar 

  • Coetzee, S., & Wolff-Piggott, B. (2015). A review of sdi literature: Searching for signs of inverse infrastructures. In Cartography-maps connecting the world (pp. 113–127). Cham: Springer.

    Chapter  Google Scholar 

  • Eder, D. (2015). Searchable map template with Google fusion tables. https://github.com/derekeder/FusionTable-Map-Template.

  • Egyedi, T. M., & Mehos, D. C. (Eds.). (2012). Inverse Infrastructures: Disrupting networks from below. Edward Elgar Publishing.

    Google Scholar 

  • Egyedi, T. M., Vrancken, J. L., & Ubacht, J. (2007). Inverse infrastructures: Coordination in self-organizing systems. In Standardization and innovation in information technology, 2007. SIIT 2007. 5th international conference on (pp. 23–36). IEEE.

    Google Scholar 

  • Elwood, S. (2006). Critical issues in participatory GIS: Deconstructions, reconstructions, and new research directions. Transactions in GIS, 10(5), 693–708.

    Article  Google Scholar 

  • Elwood, S. (2008). Volunteered geographic information: Future research directions motivated by critical, participatory, and feminist GIS. GeoJournal, 72(3–4), 173–183.

    Article  Google Scholar 

  • Elwood, S. (2008b). Volunteered geographic information: key questions, concepts and methods to guide emerging research and practice. GeoJournal, 72(3-4), 133–135.

    Google Scholar 

  • Elwood, S. (2009). Multiple representations, significations, and epistemologies in community-based GIS. In Qualitative GIS: A mixed methods approach (pp. 57–74).

    Google Scholar 

  • Elwood, S., Goodchild, M. F., & Sui, D. Z. (2012). Researching volunteered geographic information: Spatial data, geographic research, and new social practice. Annals of the Association of American Geographers, 102(3), 571–590.

    Article  Google Scholar 

  • English, P. B., Richardson, M. J., & Garzón-Galvis, C. (2018). From crowdsourcing to extreme citizen science: Participatory research for environmental health. Annual Review of Public Health, 39, 335–350.

    Article  Google Scholar 

  • Fast, V., & Rinner, C. (2018). Toward a participatory VGI methodology: Crowdsourcing information on regional food assets. International Journal of Geographical Information Science, 1, 1–16.

    Google Scholar 

  • Foster, I., & Kesselman, C. (1999). “The globus toolkit.” The grid: blueprint for a new computing infrastructure: 259-278. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA. ISBN:1-55860-475-8.

    Google Scholar 

  • Foster, I., Kesselman, C., & Tuecke, S. (2001). The anatomy of the grid: Enabling scalable virtual organizations. The International Journal of High Performance Computing Applications, 15(3), 200–222.

    Article  Google Scholar 

  • Gao, S., Li, L., Li, W., Janowicz, K., & Zhang, Y. (2017). Constructing gazetteers from volunteered Big Geo-Data based on Hadoop. Computers, Environment and Urban Systems, 61, 172–186.

    Article  Google Scholar 

  • Ghose, R., & Welcenbach, T. (2018). “Power to the people”: Contesting urban poverty and power inequities through open GIS. The Canadian Geographer/Le Géographe canadien, 62(1), 67–80.

    Article  Google Scholar 

  • Glasze, G., & Perkins, C. (2015). Social and political dimensions of the OpenStreetMap project: Towards a critical geographical research agenda. In OpenStreetMap in GIScience (pp. 143–166). Cham: Springer.

    Google Scholar 

  • Goodchild, M. F. (2007). Citizens as sensors: The world of volunteered geography. GeoJournal, 69(4), 211–221.

    Article  Google Scholar 

  • Goranson, C., Thihalolipavan, S., & di Tada, N. (2013). VGI and public health: Possibilities and pitfalls. In Crowdsourcing geographic knowledge (pp. 329–340). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Groves, P., Kayyali, B., Knott, D., & Van Kuiken, S. (2013). The ‘big data’ revolution in healthcare. McKinsey Quarterly, 2, 3.

    Google Scholar 

  • Hardy, D., Frew, J., & Goodchild, M. F. (2012). Volunteered geographic information production as a spatial process. International Journal of Geographical Information Science, 26(7), 1191–1212.

    Article  Google Scholar 

  • Healthy People. Secretary’s Advisory Committee on Health Promotion and Disease Prevention Objectives for 2020. Healthy People 2020: An opportunity to address the societal determinants of health in the United States. http://www.healthypeople.gov/2020/topicsobjectives2020/overview.aspx?topicid=39.

  • Hecht, B. J., & Gergle, D. (2010, February). On the localness of user-generated content. In Proceedings of the 2010 ACM conference on Computer supported cooperative work (pp. 229–232). ACM.

    Google Scholar 

  • Hobona, G., Jackson, M., & Anand, S. (2012). Implementing Geospatial Web Services for Cloud Computing. In I. Management Association (Ed.), Grid and cloud computing: Concepts, methodologies, tools and applications (pp. 615–636). Hershey, PA: IGI Global. https://doi.org/10.4018/978-1-4666-0879-5.ch305

  • Kang, S. Y., & Lee, Y. H. (2014). The implementation of geo-cloud SaaS system for supporting the civil engineering design using BRMS open software. 2014 fifth international conference on computing for geospatial research and application (pp. 49–50).

    Google Scholar 

  • Kerka, S. (2003). Community asset mapping. Trends and Issues Alert, (47). ERIC Clearinghouse on Adult, Career, and Vocational Education, Columbus, OH.

    Google Scholar 

  • Kolak, M., & Stepanoe, M. (2016). “HumboldtResources: Alpha” Zenodo. https://doi.org/10.5281/zenodo.44691.2016.

  • Korpilo, S., Virtanen, T., Saukkonen, T., & Lehvävirta, S. (2018). More than A to B: Understanding and managing visitor spatial behaviour in urban forests using public participation GIS. Journal of Environmental Management, 207, 124–133.

    Article  Google Scholar 

  • Kramer, S., Amos, T., Lazarus, S., & Seedat, M. (2012). The philosophical assumptions, utility and challenges of asset mapping approaches to community engagement. Journal of Psychology in Africa, 22(4), 537–544.

    Article  Google Scholar 

  • Kretzmann, J. P., & McKnight, J. (1993). Building communities from the inside out (pp. 2–10). Evanston: Center for Urban Affairs and Policy Research, Neighborhood Innovations Network.

    Google Scholar 

  • Lightfoot, E., McCleary, J. S., & Lum, T. (2014). Asset mapping as a research tool for community-based participatory research in social work. Social Work Research, 38(1), 59–64.

    Article  Google Scholar 

  • Mandarano, L., Meenar, M., & Steins, C. (2010). Building social capital in the digital age of civic engagement. Journal of Planning Literature, 25(2), 123–135.

    Article  Google Scholar 

  • Meier, P. (2011). Verifying crowdsourced social media reports for live crisis mapping: An introduction to information forensics. iRevolution blog.

    Google Scholar 

  • Pramono, A. H., Natalia, I., & Janting, Y. (2006). Ten years after: Counter-mapping and the Dayak lands in West Kalimantan, Indonesia. Digital Library of the Commons.

    Google Scholar 

  • Qazi, N., Smyth, D., & McCarthy, T. (2013). Towards a GIS-based decision support system on the Amazon cloud for the modelling of domestic wastewater treatment solutions in Wexford, Ireland. 2013 Uksim 15Th international conference on computer modelling and simulation, 236–240.

    Google Scholar 

  • Raymond, C. M., Gottwald, S., Kuoppa, J., & Kyttae, M. (2016). Integrating multiple elements of environmental justice into urban blue space planning using public participation geographic information systems. Landscape and Urban Planning, 153, 198–208.

    Article  Google Scholar 

  • Sadler, R. C. (2016). Integrating expert knowledge in a GIS to optimize siting decisions for small-scale healthy food retail interventions. International Journal of Health Geographics, 15(1), 19.

    Article  Google Scholar 

  • Sieber, R. E., Robinson, P. J., Johnson, P. A., & Corbett, J. M. (2016). Doing public participation on the geospatial web. Annals of the American Association of Geographers, 106(5), 1030–1046.

    Article  Google Scholar 

  • Solís, P., McCusker, B., Menkiti, N., Cowan, N., & Blevins, C. (2018). Engaging global youth in participatory spatial data creation for the UN sustainable development goals: The case of open mapping for malaria prevention. Applied Geography, 98, 143–155.

    Article  Google Scholar 

  • Spinuzzi, C. (2005). The methodology of participatory design. Technical Communication, 52(2), 163–174.

    Google Scholar 

  • Stensgaard, A. S., Saarnak, C. F. L., Utzinger, J., Vounatsou, P., Simoonga, C., Mushinge, G., et al. (2009). Virtual globes and geospatial health: The potential of new tools in the management and control of vector-borne diseases. Geospatial Health, 3(2), 127–114.

    Article  Google Scholar 

  • Tsou, M. H., & Buttenfield, B. P. (2002). A dynamic architecture for distributing geographic information services. Transactions in GIS, 6(4), 355–381.

    Article  Google Scholar 

  • Vaquero, L. M., Rodero-Merino, L., Caceres, J., & Lindner, M. (2008). A break in the clouds: Towards a cloud definition. ACM SIGCOMM Computer Communication Review, 39(1), 50–55.

    Article  Google Scholar 

  • Vree, W. G. (2003). Internet en Rijkswaterstaat: een ICT-infrastructuur langs water en wegen.

    Google Scholar 

  • Wang, L., Tao, J., Kunze, M., Castellanos, A. C., Kramer, D., & Karl, W. (2008, September). Scientific cloud computing: Early definition and experience. In High performance computing and communications, 2008. HPCC’08. 10th IEEE international conference on (pp. 825–830). IEEE.

    Google Scholar 

  • West Humboldt Park Development Council, 2013.

    Google Scholar 

  • Yang, C., Li, W., Xie, J., & Zhou, B. (2008). Distributed geospatial information processing: Sharing distributed geospatial resources to support Digital Earth. International Journal of Digital Earth, 1(3), 259–278.

    Article  Google Scholar 

  • Yu, J., Wu, J., & Sarwat, M. (2015). Geospark: A cluster computing framework for processing large-scale spatial data. In Proceedings of the 23rd SIGSPATIAL international conference on advances in geographic information systems (p. 70).

    Google Scholar 

  • Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauley, M., Franklin, M. J., Shenker, S., & Stoica, I. (2012). Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX conference on networked systems design and implementation (Vol. 2).

    Google Scholar 

  • Zaharia, M., Franklin, M., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I., et al. (2016). Apache spark. Communications of the ACM, 59(11), 56–65.

    Article  Google Scholar 

  • Zhan, J., Sha, Y., & Yan, J. (2012). Design and implementation of logistics vehicle monitoring system based on the SaaS model. 2012 fifth international conference on business intelligence and financial engineering (pp. 524–526).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marynia Kolak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kolak, M. et al. (2020). Extending Volunteered Geographic Information (VGI) with Geospatial Software as a Service: Participatory Asset Mapping Infrastructures for Urban Health. In: Lu, Y., Delmelle, E. (eds) Geospatial Technologies for Urban Health. Global Perspectives on Health Geography. Springer, Cham. https://doi.org/10.1007/978-3-030-19573-1_11

Download citation

Publish with us

Policies and ethics