Skip to main content

Multi-actions of Microglia

  • Chapter
  • First Online:
  • 1164 Accesses

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Microglia designate the innate immune cells of the central nervous system (CNS). Their morphology is closely related to their function, from the highly ramified resting phenotype in the healthy brain to the amoeboid-like morphology of the activated typical state of pathological conditions. Indeed, microglial cells act as resident macrophages of the brain in order to respond to injury or pathogens. Recent studies have underlined the function of microglia in physiological conditions, especially via the secretion of several cytokines which have an important impact on synaptic plasticity and cognition. We will discuss the origin, the discovery, and the different activation states of microglia. We will also review the current knowledge about the functions of microglia during CNS development, immune surveillance and their implication in neuronal networks and synaptic plasticity in both physiological and pathological conditions. Microglia could represent a genuine potential therapeutic target in the context of neuroimmune diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

11C-PK11195:

11C-1-(2-chlorophenyl)-N-[11C]methyl-N-(1-methylpropyl)-3-isoquinoline carboxamide

AD:

Alzheimer’s disease

AMPA:

Α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

APC:

Antigen-presenting cell

Arg1:

Arginase 1

ATP:

Adenosine triphosphate

Aβ:

Amyloid beta

BBB:

Blood-brain barrier

BDNF:

Brain-derived neurotrophic factor

CaMK:

Ca2+/calmodulin-dependent protein kinase

CCL:

Chemokine ligand

CCR:

Chemokine receptor

CD:

Cluster of differentiation

CNS:

Central nervous system

COX-2:

Cyclooxygenase-2

CSF-1:

Colony-stimulating factor-1

CX3CL1:

C-X3-C chemokine ligand 1

CX3CR1:

C-X3-C chemokine receptor 1

DAMPs:

Damage-associated molecular patterns

DAP12:

DNAX-activating protein of 12 kDa

DC:

Dendritic cell

EAE:

Experimental autoimmune encephalitis

EGFP:

Enhanced green fluorescent protein

ERK:

Extracellular-signal-regulated kinase

GABA:

Γ-Aminobutyric acid

GAD65:

Glutamate decarboxylase 65

Gal-1:

Galectin-1

GDNF:

Glial cell-derived neurotrophic factor

GFP:

Green fluorescent protein

GluR2:

GluR2 subunit of AMPA receptor

Iba1:

Ionised calcium-binding adapter molecule 1

IdU:

5-iodo-2′-deoxyuridine

IFN-γ:

Interferon gamma

IGF-1:

Insulin-like growth factor-1

IL:

Interleukin

iNOS:

Inducible nitric oxide synthase

iPSCs:

Induced pluripotent stem cells

LPS:

Lipopolysaccharide

LTP:

Long-term potentiation

Ly6C:

Lymphocyte Antigen 6C

MAPK:

Mitogen-activated protein kinase

M-CSF:

Macrophage colony-stimulating factor

MHC class II:

Major histocompatibility complex class II

MS:

Multiple sclerosis

MW151:

4-Methyl-6-phenyl-3-(4-pyrimidin-2-ylpiperazin-1-yl)pyridazine (minozac)

NADPH:

Nicotinamide adenine dinucleotide phosphate

NFKB:

Nuclear factor kappa B

NGF:

Nerve growth factor

NMDA:

N-methyl-D-aspartate

NO:

Nitric oxide

NR2B:

NR2B subunit of NMDA receptor

P2RY12:

Purinergic receptor P2Y 12

PAMPs:

Pathogen-associated molecular patterns

PD:

Parkinson’s disease

PET:

Positron-emission tomography

PI3K:

Phosphoinositide 3-kinase

PKA:

Protein kinase A

PKC:

Protein kinase C

PLC-γ:

Phospholipase C gamma

PSD-95:

Postsynaptic density 95

ROS:

Reactive oxygen species

TGF-β:

Transforming growth factor beta

TMEM119:

Transmembrane protein 119

TNF-α:

Tumour necrosis factor alpha

TREM2:

Triggering receptor expressed on myeloid cells 2

TrkB:

Tropomyosin receptor kinase B

TSPO:

Translocator protein

References

  1. Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, Yeromin AV, Scarfone VM, Marsh SE, Fimbres C, et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron. 2017;94:278–293.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Achucarro N. Cellules allongées et Stäbchenzellen: cellules neurogliques et cellules granulo-adipeuses à la corne dammon du lapin. Trab Lab Invest Biol Univ Madrid. 1909;4:2–15.

    Google Scholar 

  3. Achúcarro N. Nuevo método para el estudio de la neuroglia y del tejido conjuntivo. Bol Soc Esp Biol. 1911;1(7):139–41.

    Google Scholar 

  4. Achucarro N. Notas sobre la estructura y funciones de la neuroglia y en particular de la neuroglia de la corteza cerebral humana. Trab Lab Invest Biol Univ Madrid. 1913;3:1–31.

    Google Scholar 

  5. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FMV. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci. 2007;10:1538–43.

    Article  CAS  PubMed  Google Scholar 

  6. Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FMV. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci. 2011;14:1142–9.

    Article  CAS  PubMed  Google Scholar 

  7. Almeida CG, Tampellini D, Takahashi RH, Greengard P, Lin MT, Snyder EM, Gouras GK. Beta-amyloid accumulation in APP mutant neurons reduces PSD-95 and GluR1 in synapses. Neurobiol Dis. 2005;20:187–98.

    Article  CAS  PubMed  Google Scholar 

  8. Aloisi F. Immune function of microglia. Glia. 2001;36:165–79.

    Article  CAS  PubMed  Google Scholar 

  9. Arcuri C, Mecca C, Bianchi R, Giambanco I, Donato R. The pathophysiological role of microglia in dynamic surveillance, phagocytosis and structural remodeling of the developing CNS. Front Mol Neurosci. 2017;10:191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Askew K, Li K, Olmos-Alonso A, Garcia-Moreno F, Liang Y, Richardson P, Tipton T, Chapman MA, Riecken K, Beccari S, et al. Coupled proliferation and apoptosis maintain the rapid turnover of microglia in the adult brain. Cell Rep. 2017;18:391–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Avital A, Goshen I, Kamsler A, Segal M, Iverfeldt K, Richter-Levin G, Yirmiya R. Impaired interleukin-1 signaling is associated with deficits in hippocampal memory processes and neural plasticity. Hippocampus. 2003;13:826–34.

    Article  CAS  PubMed  Google Scholar 

  12. Bachstetter AD, Zhou Z, Rowe RK, Xing B, Goulding DS, Conley AN, Sompol P, Meier S, Abisambra JF, Lifshitz J, et al. MW151 inhibited IL-1β levels after traumatic brain injury with no effect on microglia physiological responses. PLoS One. 2016;11:e0149451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Bilbo SD, Schwarz JM. The immune system and developmental programming of brain and behavior. Front Neuroendocrinol. 2012;33:267–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brochard V, Combadière B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay J-M, et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Investig. 2009;119(1):182–92.

    CAS  PubMed  Google Scholar 

  15. Bruttger J, Karram K, Wörtge S, Regen T, Marini F, Hoppmann N, Klein M, Blank T, Yona S, Wolf Y, et al. Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity. 2015;43:92–106.

    Article  CAS  PubMed  Google Scholar 

  16. Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, Koeglsperger T, Dake B, Wu PM, Doykan CE, et al. Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17:131–43.

    Article  CAS  PubMed  Google Scholar 

  17. Clausen F, Hånell A, Björk M, Hillered L, Mir AK, Gram H, Marklund N. Neutralization of interleukin-1β modifies the inflammatory response and improves histological and cognitive outcome following traumatic brain injury in mice. Eur J Neurosci. 2009;30:385–96.

    Article  PubMed  Google Scholar 

  18. Coull JAM, Beggs S, Boudreau D, Boivin D, Tsuda M, Inoue K, Gravel C, Salter MW, De Koninck Y. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438:1017–21.

    Article  CAS  PubMed  Google Scholar 

  19. Di Filippo M, Sarchielli P, Picconi B, Calabresi P. Neuroinflammation and synaptic plasticity: theoretical basis for a novel, immune-centred, therapeutic approach to neurological disorders. Trends Pharmacol Sci. 2008;29:402–12.

    Article  PubMed  CAS  Google Scholar 

  20. Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, Peri F, Wilson SW, Ruhrberg C. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood. 2010;116:829–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fenn AM, Hall JCE, Gensel JC, Popovich PG, Godbout JP. IL-4 signaling drives a unique arginase+/IL-1 + microglia phenotype and recruits macrophages to the inflammatory CNS: consequences of age-related deficits in IL-4R after traumatic spinal cord injury. J Neurosci. 2014;34:8904–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ferretti MT, Merlini M, Späni C, Gericke C, Schweizer N, Enzmann G, Engelhardt B, Kulic L, Suter T, Nitsch RM. T-cell brain infiltration and immature antigen-presenting cells in transgenic models of Alzheimer’s disease-like cerebral amyloidosis. Brain Behav Immun. 2016;54:211–25.

    Article  CAS  PubMed  Google Scholar 

  23. Füger P, Hefendehl JK, Veeraraghavalu K, Wendeln A-C, Schlosser C, Obermüller U, Wegenast-Braun BM, Neher JJ, Martus P, Kohsaka S, et al. Microglia turnover with aging and in an Alzheimer’s model via long-term in vivo single-cell imaging. Nat Neurosci. 2017;20:1371–6.

    Article  PubMed  CAS  Google Scholar 

  24. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity. 2003;19:71–82.

    Article  CAS  PubMed  Google Scholar 

  25. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ginhoux F, Lim S, Hoeffel G, Low D, Huber T. Origin and differentiation of microglia. Front Cell Neurosci. 2013;7:45.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gomez-Nicola D, Perry VH. Microglial dynamics and role in the healthy and diseased brain: a paradigm of functional plasticity. Neuroscientist. 2015;21:169–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. González H, Elgueta D, Montoya A, Pacheco R. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases. J Neuroimmunol. 2014;274:1–13.

    Article  PubMed  CAS  Google Scholar 

  29. Goshen I, Kreisel T, Ounallah-Saad H, Renbaum P, Zalzstein Y, Ben-Hur T, Levy-Lahad E, Yirmiya R. A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology. 2007;32:1106–15.

    Article  CAS  PubMed  Google Scholar 

  30. Goverman J. Autoimmune T cell responses in the central nervous system. Nat Rev Immunol. 2009;9:393–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Haenseler W, Sansom SN, Buchrieser J, Newey SE, Moore CS, Nicholls FJ, Chintawar S, Schnell C, Antel JP, Allen ND, et al. A highly efficient human pluripotent stem cell microglia model displays a neuronal-co-culture-specific expression profile and inflammatory response. Stem Cell Reports. 2017;8:1727–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hein AM, Stasko MR, Matousek SB, Scott-McKean JJ, Maier SF, Olschowka JA, Costa ACS, O’Banion MK. Sustained hippocampal IL-1β overexpression impairs contextual and spatial memory in transgenic mice. Brain Behav Immun. 2010;24:243–53.

    Article  CAS  PubMed  Google Scholar 

  33. Helms S. Cancer prevention and therapeutics: Panax ginseng. Altern Med Rev. 2004;9:259–74.

    PubMed  Google Scholar 

  34. Heo J-H, Lee S-T, Chu K, Oh MJ, Park H-J, Shim J-Y, Kim M. An open-label trial of Korean red ginseng as an adjuvant treatment for cognitive impairment in patients with Alzheimers disease. Eur J Neurol. 2008;15:865–8.

    Article  PubMed  Google Scholar 

  35. Hirasawa T, Ohsawa K, Imai Y, Ondo Y, Akazawa C, Uchino S, Kohsaka S. Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J Neurosci Res. 2005;81:357–62.

    Article  CAS  PubMed  Google Scholar 

  36. Horti AG, Naik R, Foss CA, Minn I, Misheneva V, Du Y, Wang Y, Mathews WB, Wu Y, Hall A, et al. PET imaging of microglia by targeting macrophage colony-stimulating factor 1 receptor (CSF1R). Proc Natl Acad Sci. 2019;116:1686–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jung J-S, Shin JA, Park E-M, Lee J-E, Kang Y-S, Min S-W, Kim D-H, Hyun J-W, Shin C-Y, Kim H-S. Anti-inflammatory mechanism of ginsenoside Rh1 in lipopolysaccharide-stimulated microglia: critical role of the protein kinase A pathway and hemeoxygenase-1 expression: anti-inflammatory mechanism of Rh1 in brain. J Neurochem. 2010;115:1668–80.

    Article  CAS  PubMed  Google Scholar 

  38. Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, Littman DR. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol. 2000;20:4106–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Hölscher C, et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci. 2013;16:273–80.

    Article  CAS  PubMed  Google Scholar 

  40. Kivisäkk P, Imitola J, Rasmussen S, Elyaman W, Zhu B, Ransohoff RM, Khoury SJ. Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann Neurol. 2009;65:457–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Kobayashi K, Imagama S, Ohgomori T, Hirano K, Uchimura K, Sakamoto K, Hirakawa A, Takeuchi H, Suzumura A, Ishiguro N, et al. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis. 2013;4:e525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Konefal SC, Stellwagen D. Tumour necrosis factor-mediated homeostatic synaptic plasticity in behavioural models: testing a role in maternal immune activation. Philos Trans R Soc Lond B Biol Sci. 2017;372:20160160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kotter MR. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci. 2006;26:328–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kubota Y, Takubo K, Shimizu T, Ohno H, Kishi K, Shibuya M, Saya H, Suda T. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J Exp Med. 2009;206:1089–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kumar A, Rinwa P, Dhar H. Microglial inhibitory effect of ginseng ameliorates cognitive deficits and neuroinflammation following traumatic head injury in rats. Inflammopharmacology. 2014;22:155–67.

    Article  PubMed  Google Scholar 

  46. Kumar A, Alvarez-Croda D-M, Stoica BA, Faden AI, Loane DJ. Microglial/macrophage polarization dynamics following traumatic brain injury. J Neurotrauma. 2016;33:1732–50.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lampron A, Larochelle A, Laflamme N, Préfontaine P, Plante M-M, Sánchez MG, Yong VW, Stys PK, Tremblay M-È, Rivest S. Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J Exp Med. 2015;212:481–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lawson LJ, Perry VH, Gordon S. Turnover of resident microglia in the normal adult mouse brain. Neuroscience. 1992;48:405–15.

    Article  CAS  PubMed  Google Scholar 

  49. Lee MS, Yang EJ, Kim J-I, Ernst E. Ginseng for cognitive function in Alzheimer’s disease: a systematic review. J Alzheimers Dis. 2009;18:339–44.

    Article  PubMed  Google Scholar 

  50. Lewitus GM, Pribiag H, Duseja R, St-Hilaire M, Stellwagen D. An adaptive role of TNF in the regulation of striatal synapses. J Neurosci. 2014;34:6146–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li T, Pang S, Yu Y, Wu X, Guo J, Zhang S. Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke. Brain. 2013;136:3578–88.

    Article  PubMed  Google Scholar 

  52. Li Y, Du X, Liu C, Wen Z, Du J. Reciprocal regulation between resting microglial dynamics and neuronal activity in vivo. Dev Cell. 2012;23:1189–202.

    Article  CAS  PubMed  Google Scholar 

  53. Lindberg OR, Brederlau A, Kuhn HG. Epidermal growth factor treatment of the adult brain subventricular zone leads to focal microglia/macrophage accumulation and angiogenesis. Stem Cell Reports. 2014;2:440–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu X-G, Zhou L-J. Long-term potentiation at spinal C-fiber synapses: a target for pathological pain. Curr Pharm Des. 2014;21:895–905.

    Article  CAS  Google Scholar 

  55. Liu L, Hoang-Gia T, Wu H, Lee M-R, Gu L, Wang C, Yun B-S, Wang Q, Ye S, Sung C-K. Ginsenoside Rb1 improves spatial learning and memory by regulation of cell genesis in the hippocampal subregions of rats. Brain Res. 2011;1382:147–54.

    Article  CAS  PubMed  Google Scholar 

  56. Liu Y, Zhou L-J, Wang J, Li D, Ren W-J, Peng J, Wei X, Xu T, Xin W-J, Pang R-P, et al. TNF-α differentially regulates synaptic plasticity in the hippocampus and spinal cord by microglia-dependent mechanisms after peripheral nerve injury. J Neurosci. 2017;37:871–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Martinez FO, Sica A, Mantovani A, Locati M. Macrophage activation and polarization. Front Biosci. 2008;13:453–61.

    Article  CAS  PubMed  Google Scholar 

  58. McFarland HF, Martin R. Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol. 2007;8:913–9.

    Article  CAS  PubMed  Google Scholar 

  59. Moore AH, Wu M, Shaftel SS, Graham KA, O’Banion MK. Sustained expression of interleukin-1β in mouse hippocampus impairs spatial memory. Neuroscience. 2009;164:1484–95.

    Article  CAS  PubMed  Google Scholar 

  60. Muffat J, Li Y, Yuan B, Mitalipova M, Omer A, Corcoran S, Bakiasi G, Tsai L-H, Aubourg P, Ransohoff RM, et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat Med. 2016;22:1358–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.

    Article  CAS  PubMed  Google Scholar 

  62. Ong W-Y. Protective effects of ginseng on neurological disorders. Front Aging Neurosci. 2015;7:129.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states: microglia bioenergetics with acute polarization. Br J Pharmacol. 2016;173:649–65.

    Article  CAS  PubMed  Google Scholar 

  64. Pandya H, Shen MJ, Ichikawa DM, Sedlock AB, Choi Y, Johnson KR, Kim G, Brown MA, Elkahloun AG, Maric D, et al. Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat Neurosci. 2017;20:753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333:1456–8.

    Article  CAS  PubMed  Google Scholar 

  66. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR, Lafaille JJ, Hempstead BL, Littman DR, Gan W-B. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013;155:1596–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Petersen AMW, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98:1154–62.

    Article  CAS  PubMed  Google Scholar 

  68. Piccio L, Buonsanti C, Mariani M, Cella M, Gilfillan S, Cross AH, Colonna M, Panina-Bordignon P. Blockade of TREM-2 exacerbates experimental autoimmune encephalomyelitis. Eur J Immunol. 2007;37:1290–301.

    Article  CAS  PubMed  Google Scholar 

  69. Politis M. Imaging of microglia in patients with neurodegenerative disorders. Front Pharmacol. 2012;3:96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Pribiag H, Stellwagen D. TNF- downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABAA receptors. J Neurosci. 2013;33:15879–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ramón y Cajal S. Algo sobre la significación fisiológica de la neuroglia. Revista Trimestral Micrografía. 1897;1:3–47.

    Google Scholar 

  72. Ramón y Cajal S. Contribución al conocimiento de la neuroglia del cerebro humano. Trab Lab Invest Biol XI. 1913;11:255–315.

    Google Scholar 

  73. Réu P, Khosravi A, Bernard S, Mold JE, Salehpour M, Alkass K, Perl S, Tisdale J, Possnert G, Druid H, et al. The lifespan and turnover of microglia in the human brain. Cell Rep. 2017;20:779–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Rex CS, Lin C-Y, Kramar EA, Chen LY, Gall CM, Lynch G. Brain-derived neurotrophic factor promotes long-term potentiation-related cytoskeletal changes in adult hippocampus. J Neurosci. 2007;27:3017–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Reynolds AD, Banerjee R, Liu J, Gendelman HE, Lee Mosley R. Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson’s disease. J Leukoc Biol. 2007;82:1083–94.

    Article  CAS  PubMed  Google Scholar 

  76. Río-Hortega P. El “tercer elemento de los centros nerviosos”. IV. Poder fagocitario y movilidad de la microglía. Bol Soc Esp Biol. 1919;VIII:155–66.

    Google Scholar 

  77. Río-Hortega P. El “tercer elemento” de los centros nerviosos. III. Naturaleza probable de la microglía. Bol Soc Esp Biol. 1919;VIII:108–15.

    Google Scholar 

  78. Río-Hortega P. El “tercer elemento” de los centros nerviosos. I. La microglía en estado normal. II. Intervención de la microglía en los procesos patológicos (células en bastoncito y cuerpos gránulo-adiposos). Bol. Soc. Esp. Biol. 1919;VIII:69–109.

    Google Scholar 

  79. Rogers JT, Morganti JM, Bachstetter AD, Hudson CE, Peters MM, Grimmig BA, Weeber EJ, Bickford PC, Gemma C. CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J Neurosci. 2011;31:16241–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rymo SF, Gerhardt H, Wolfhagen Sand F, Lang R, Uv A, Betsholtz C. A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures. PLoS One. 2011;6:e15846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Satoh J, Kino Y, Asahina N, Takitani M, Miyoshi J, Ishida T, Saito Y. TMEM119 marks a subset of microglia in the human brain: human microglial marker TMEM119. Neuropathology. 2016;36:39–49.

    Article  CAS  PubMed  Google Scholar 

  82. Scott G, Zetterberg H, Jolly A, Cole JH, De Simoni S, Jenkins PO, Feeney C, Owen DR, Lingford-Hughes A, Howes O, et al. Minocycline reduces chronic microglial activation after brain trauma but increases neurodegeneration. Brain. 2018;141:459–71.

    Article  PubMed  Google Scholar 

  83. Seo J-W, Yang E-J, Kim SH, Choi I-H. An inhibitory alternative splice isoform of Toll-like receptor 3 is induced by type I interferons in human astrocyte cell lines. BMB Rep. 2015;48:696–701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Sheridan GK, Murphy KJ. Neuron-glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage. Open Biol. 2013;3:–130181.

    Google Scholar 

  85. Smith AM, Dragunow M. The human side of microglia. Trends Neurosci. 2014;37:125–35.

    Article  CAS  PubMed  Google Scholar 

  86. Spulber S, Mateos L, Oprica M, Cedazo-Minguez A, Bartfai T, Winblad B, Schultzberg M. Impaired long term memory consolidation in transgenic mice overexpressing the human soluble form of IL-1ra in the brain. J Neuroimmunol. 2009;208:46–53.

    Article  CAS  PubMed  Google Scholar 

  87. Starossom SC, Mascanfroni ID, Imitola J, Cao L, Raddassi K, Hernandez SF, Bassil R, Croci DO, Cerliani JP, Delacour D, et al. Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity. 2012;37:249–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Stellwagen D. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha. J Neurosci. 2005;25:3219–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stellwagen D, Malenka RC. Synaptic scaling mediated by glial TNF-alpha. Nature. 2006;440:1054–9.

    Article  CAS  PubMed  Google Scholar 

  90. Streit WJ, Xue Q-S, Tischer J, Bechmann I. Microglial pathology. Acta Neuropathol Commun. 2014;2:142.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Takahashi K, Rochford CDP, Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med. 2005;201:647–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Takahashi K, Prinz M, Stagi M, Chechneva O, Neumann H. TREM2-transduced myeloid precursors mediate nervous tissue debris clearance and facilitate recovery in an animal model of multiple sclerosis. PLoS Med. 2007;4:e124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Thornton P, Pinteaux E, Gibson RM, Allan SM, Rothwell NJ. Interleukin-1-induced neurotoxicity is mediated by glia and requires caspase activation and free radical release. J Neurochem. 2006;98:258–66.

    Article  CAS  PubMed  Google Scholar 

  94. Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, Yamashita T. Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci. 2013;16:543–51.

    Article  CAS  PubMed  Google Scholar 

  95. Vezzani A, Viviani B. Neuromodulatory properties of inflammatory cytokines and their impact on neuronal excitability. Neuropharmacology. 2015;96:70–82.

    Article  CAS  PubMed  Google Scholar 

  96. Vivash L, OBrien TJ. Imaging microglial activation with TSPO PET: lighting up neurologic diseases? J Nucl Med. 2016;57:165–8.

    Article  CAS  PubMed  Google Scholar 

  97. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci. 2009;29:3974–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wakselman S, Bechade C, Roumier A, Bernard D, Triller A, Bessis A. Developmental neuronal death in hippocampus requires the microglial CD11b integrin and DAP12 immunoreceptor. J Neurosci. 2008;28:8138–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wall AM, Mukandala G, Greig NH, O’Connor JJ. Tumor necrosis factor-α potentiates long-term potentiation in the rat dentate gyrus after acute hypoxia: TNF-α Increases LTP Post Hypoxia. J Neurosci Res. 2015;93:815–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Walter L, Neumann H. Role of microglia in neuronal degeneration and regeneration. Semin Immunopathol. 2009;31:513–25.

    Article  PubMed  Google Scholar 

  101. Wang G, Zhang J, Hu X, Zhang L, Mao L, Jiang X, Liou AK-F, Leak RK, Gao Y, Chen J. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J Cereb Blood Flow Metab. 2013;33:1864–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang L, Pavlou S, Du X, Bhuckory M, Xu H, Chen M. Glucose transporter 1 critically controls microglial activation through facilitating glycolysis. Mol Neurodegener. 2019;14:2.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, Neniskyte U, Exiga M, Vadisiute A, Raggioli A, Schertel A, et al. Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat Commun. 2018;9:1228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Wlodarczyk A, Løbner M, Cédile O, Owens T. Comparison of microglia and infiltrating CD11c+ cells as antigen presenting cells for T cell proliferation and cytokine response. J Neuroinflammation. 2014;11:57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Wu Y-C, Williamson R, Li Z, Vicario A, Xu J, Kasai M, Chern Y, Tongiorgi E, Baraban JM. Dendritic trafficking of brain-derived neurotrophic factor mRNA: regulation by translin-dependent and -independent mechanisms: dendritic trafficking of BDNF mRNA. J Neurochem. 2011;116:1112–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wu X, Hsuchou H, Kastin AJ, Mishra PK, Pan W. Upregulation of astrocytic leptin receptor in mice with experimental autoimmune encephalomyelitis. J Mol Neurosci. 2013;49:446–56.

    Article  CAS  PubMed  Google Scholar 

  107. Yang L, Zhang J, Zheng K, Shen H, Chen X. Long-term ginsenoside Rg1 supplementation improves age-related cognitive decline by promoting synaptic plasticity associated protein expression in C57BL/6J mice. J Gerontol Ser A Biol Med Sci. 2014;69A:282–94.

    Article  CAS  Google Scholar 

  108. Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun. 2011;25:181–213.

    Article  CAS  PubMed  Google Scholar 

  109. Yona S, Kim K-W, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, Misharin A, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38:79–91.

    Article  CAS  PubMed  Google Scholar 

  110. Ziehn MO, Avedisian AA, Tiwari-Woodruff S, Voskuhl RR. Hippocampal CA1 atrophy and synaptic loss during experimental autoimmune encephalomyelitis, EAE. Lab Investig. 2010;90:774–86.

    Article  PubMed  Google Scholar 

  111. Zheng K, An JJ, Yang F, Xu W, Xu Z-QD, Wu J, Hokfelt TGM, Fisahn A, Xu B, Lu B. TrkB signaling in parvalbumin-positive interneurons is critical for gamma-band network synchronization in hippocampus. Proc Natl Acad Sci. 2011;108:17201–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Zong Y, Ai Q-L, Zhong L-M, Dai J-N, Yang P, He Y, Sun J, Ling E-A, Lu D. Ginsenoside Rg1 attenuates lipopolysaccharide-induced inflammatory responses via the phospholipase C-γ1 signaling pathway in murine BV-2 microglial cells. Curr Med Chem. 2012;19:770–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Célestine Brunois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brunois, C., Ris, L. (2019). Multi-actions of Microglia. In: Mitoma, H., Manto, M. (eds) Neuroimmune Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-19515-1_9

Download citation

Publish with us

Policies and ethics