Skip to main content

The Roles of Regulatory T Cells in Central Nervous System Autoimmunity

  • Chapter
  • First Online:
Neuroimmune Diseases

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 1174 Accesses

Abstract

Regulatory T (Treg) cells are a population of T cells that can functionally supress an immune response and are fundamental in maintaining T cell tolerance to self-antigens and immune homeostasis in the healthy individual. They exert strong suppressive functions through a variety of mechanisms, including modulation of antigen-presenting cell maturation or function, metabolic disruption, the production and secretion of anti-inflammatory cytokines and direct cytotoxicity. Treg cells are generally thought to have a beneficial role in most immune-mediated contexts, and a loss of suppressive capability and altered numbers in a variety of neurological conditions can occur. This review examines the role of Treg cells in the context of central nervous system (CNS) autoimmunity, and how they contribute to both relatively common and more rare diseases involving demyelination or degeneration of the CNS, including multiple sclerosis, neuromyelitis optica, acute disseminated encephalomyelitis, anti-NMDAR encephalitis, and narcolepsy with cataplexy. Although the role of Treg cells in some of these conditions is still very much in the preliminary stages, it is a feasible notion that with more research, harnessing the innate suppressive abilities of these potent immune cells will contribute to the development of novel therapeutics in autoimmune disorders of the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADEM:

Acute disseminated encephalomyelitis

APCs:

Antigen-presenting cells

AQP4:

Aquaporin 4

A2AR:

Adenosine receptor 2A

BBB:

Blood–brain barrier

cAMP:

Cyclic adenosine monophosphate

CIS:

Clinically isolated syndrome

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

CTLA4:

Cytotoxic T lymphocyte antigen 4

DC:

Dendritic cell

DEREG:

DEpletion of REGulatory T cells

EAE:

Experimental autoimmune encephalomyelitis

Ebi3:

Epstein–Barr virus-induced gene 3

FoxP3:

Forkhead box protein 3

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

HLA:

Human leukocyte antigen

IBD:

Inflammatory bowel disease

IDO:

Indoleamine 2,3-dioxygenase

IFN:

Interferon

IgG:

Immunoglobulin G

IL:

Interleukin

iTreg:

Inducible regulatory T cell

LAG3:

Lymphocyte-activation gene 3

LH:

Lateral hypothalamus

MBP:

Myelin basic protein

MG:

Myasthenia gravis

MHV:

Mouse hepatitis virus

MOG:

Myelin oligodendrocyte glycoprotein

MS:

Multiple sclerosis

NMDAR:

N-methyl-D-aspartate receptor

NMO:

Neuromyelitis optica

NMOSD:

Neuromyelitis optica spectrum disorders

nTreg:

Natural regulatory T cell

NT1:

Narcolepsy type 1

PBMCs:

Peripheral blood mononuclear cells

PLP:

Proteolipoprotein

PPMS:

Primary progressive multiple sclerosis

RRMS:

Relapsing–remitting multiple sclerosis

SPMS:

Secondary progressive multiple sclerosis

TCRs:

T cell receptors

TGF:

Transforming growth factor

Th:

T helper cell

TNF:

Tumour necrosis factor

Treg:

Regulatory T cell

References

  1. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133:775–87.

    CAS  PubMed  Google Scholar 

  2. Duffy SS, Lees JG, Moalem-Taylor G. The contribution of immune and glial cell types in experimental autoimmune encephalomyelitis and multiple sclerosis. Mult Scler Int. 2014;2014:1–17.

    Google Scholar 

  3. Wei S, Kryczek I, Zou W. Regulatory T-cell compartmentalization and trafficking. Blood. 2006;108:426–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharma A, Rudra D. Emerging functions of regulatory T cells in tissue homeostasis. Front Immunol. 2018;9:883.

    PubMed  PubMed Central  Google Scholar 

  5. Gavin MA, Torgerson TR, Houston E, Ho WY, Stray-pedersen A, Ocheltree EL, et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc Natl Acad Sci U S A. 2018;103(17):6659–64.

    Google Scholar 

  6. Devaud C, Yong CSM, John LB, Westwood JA, Duong CPM, House CM, et al. Foxp3 expression in macrophages associated with RENCA tumors in mice. PLoS One. 2014;9(9) https://doi.org/10.1371/journal.pone.0108670.

  7. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4 + CD25 + regulatory T cells. Nat Immunol. 2003;4(4):330–6.

    CAS  PubMed  Google Scholar 

  8. Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA, et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature. 2007;445(February):771–5.

    CAS  PubMed  Google Scholar 

  9. Gol-ara M, Jadidi-niaragh F, Sadria R, Azizi G, Mirshafiey A. The role of different subsets of regulatory T cells in immunopathogenesis of rheumatoid arthritis. Arthritis. 2012;2012:805875.

    PubMed  PubMed Central  Google Scholar 

  10. Lan R, Ansari A, Lian Z, Gershwin M. Regulatory T cells: development, function and role in autoimmunity. Autoimmun Rev. 2005;4(6):351–63.

    CAS  PubMed  Google Scholar 

  11. Sakaguchi S, Sakaguchi N, Shimizu J, Yamazaki S, Sakihama T, Itoh M, et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev. 2001;182:18–32.

    CAS  PubMed  Google Scholar 

  12. Abdel-Gadir A, Massoud AH, Chatila TA. Antigen-specific Treg cells in immunological tolerance: implications for allergic diseases. F1000Res. 2018;7(38) https://doi.org/10.12688/f1000research.12650.1.

  13. Vignali DAA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol. 2008;8(7):523–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Takahashi T, Kuniyasu Y, Toda M, Sakaguchi N, Itoh M, Iwata M, et al. Immunologic self-tolerance maintained by CD25+CD4+naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol. 1998;10(12):1969–80.

    CAS  PubMed  Google Scholar 

  15. Read S, Malmström V, Powrie F. Cytotoxic T Lymphocyte-Associated Antigen 4 Plays an Essential Role in the Function of Cd25+ Cd4+ Regulatory Cells That Control Intestinal Inflammation. J Exp Med. 2000;192(2):295–302.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Oderup C, Cederbom L, Makowska A, Cilio CM, Ivars F. Cytotoxic T lymphocyte antigen-4-dependent down-modulation of costimulatory molecules on dendritic cells in CD4+ CD25+ regulatory T-cell-mediated suppression. Immunology. 2006;118(2):240–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Serra P, Amrani A, Yamanouchi J, Han B, Thiessen S, Utsugi T, et al. CD40 Ligation Releases Immature Dendritic Cells from the Control of Regulatory CD4+CD25+T Cells. Immunity. 2003;19(6):877–89.

    CAS  PubMed  Google Scholar 

  18. Mellor AL, Munn DH. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol. 2004;4(10):762–74.

    CAS  PubMed  Google Scholar 

  19. Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, et al. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol. 2003;4(12):1206–12.

    CAS  PubMed  Google Scholar 

  20. Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, et al. Role of LAG-3 in regulatory T cells. Immunity. 2004;21(4):503–13.

    CAS  PubMed  Google Scholar 

  21. Workman CJ, Vignali DAA. Negative Regulation of T Cell Homeostasis by Lymphocyte Activation Gene-3 (CD223). J Immunol. 2005;174(2):688–95.

    CAS  PubMed  Google Scholar 

  22. Liang B, Workman C, Lee J, Chew C, Dale BM, Colonna L, et al. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol. 2008;180(9):5916–26.

    CAS  PubMed  Google Scholar 

  23. Sarris M, Andersen KG, Randow F, Mayr L, Betz AG. Neuropilin-1 expression on regulatory T cells enhances their interactions with dendritic cells during antigen recognition. Immunity. 2008;28(3):402–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007;204(6):1257–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, et al. Expression of ectonucleotidase CD39 by Foxp3+Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110(4):1225–32.

    CAS  PubMed  Google Scholar 

  26. Kobie JJ, Shah PR, Yang L, Rebhahn JA, Fowell DJ, Mosmann TR. T regulatory and primed uncommitted CD4 T cells express CD73, which suppresses effector CD4 T cells by converting 5′-adenosine monophosphate to adenosine. J Immunol. 2006;177(10):6780–6.

    CAS  PubMed  Google Scholar 

  27. Zarek PE, Huang CT, Lutz ER, Kowalski J, Horton MR, Linden J, et al. A2Areceptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells. Blood. 2008;111(1):251–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bopp T, Becker C, Klein M, Klein-Heßling S, Palmetshofer A, Serfling E, et al. Cyclic adenosine monophosphate is a key component of regulatory T cell–mediated suppression. J Exp Med. 2007;204(6):1303–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Thornton AM, Shevach EM. CD4+ CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med. 1998;188(2):287–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. de la Rosa M, Rutz S, Dorninger H, Scheffold A. Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur J Immunol. 2004;34(9):2480–8.

    PubMed  Google Scholar 

  31. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ. CD4+CD25+Foxp3+regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+T cells. Nat Immunol. 2007;8(12):1353–62.

    CAS  PubMed  Google Scholar 

  32. Oberle N, Eberhardt N, Falk CS, Krammer PH, Suri-Payer E. Rapid suppression of cytokine transcription in human CD4+CD25- T cells by CD4+Foxp3+ regulatory T cells: independence of IL-2 consumption, TGF-, and various inhibitors of TCR signaling. J Immunol. 2007;179(6):3578–87.

    CAS  PubMed  Google Scholar 

  33. Hawrylowicz CM, O’Garra A. Potential role of interleukin-10-secreting regulatory T cells in allergy and asthma. Nat Rev Immunol. 2005;5(4):271–83.

    CAS  PubMed  Google Scholar 

  34. Joetham A, Takada K, Taube C, Miyahara N, Matsubara S, Koya T, et al. Naturally occurring lung CD4+CD25+ T cell regulation of airway allergic responses depends on IL-10 induction of TGF-β. J Immunol. 2007;178(3):1433–42.

    CAS  PubMed  Google Scholar 

  35. Kearley J, Barker JE, Robinson DS, Lloyd CM. Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4 + CD25 + regulatory T cells is interleukin 10 dependent. J Exp Med. 2005;202(11):1539.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Rubtsov YP, Rasmussen JP, Chi EY, Fontenot J, Castelli L, Ye X, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28(4):546–58.

    CAS  PubMed  Google Scholar 

  37. Loser K, Apelt J, Voskort M, Mohaupt M, Balkow S, Schwarz T, et al. IL-10 controls ultraviolet-induced carcinogenesis in mice. J Immunol. 2007;179(1):365–71.

    CAS  PubMed  Google Scholar 

  38. Erhardt A, Biburger M, Papadopoulos T, Tiegs G. IL-10, regulatory T cells, and Kupffer cells mediate tolerance in concanavalin A-induced liver injury in mice. Hepatology. 2007;45(2):475–85.

    CAS  PubMed  Google Scholar 

  39. Schumacher A, Wafula PO, Bertoja AZ, Sollwedel A, Thuere C, Wollenberg I, et al. Mechanisms of action of regulatory T cells specific for paternal antigens during pregnancy. Obstet Gynecol. 2007;110(5):1137–45.

    CAS  PubMed  Google Scholar 

  40. Mann MK, Maresz K, Shriver LP, Tan Y, Dittel BN. B cell regulation of CD4+CD25+ T regulatory cells and IL-10 via B7 is essential for recovery from experimental autoimmune encephalomyelitis. J Immunol. 2007;178(6):3447–56.

    CAS  PubMed  Google Scholar 

  41. Fahlén L, Read S, Gorelik L, Hurst SD, Coffman RL, Flavell RA, et al. T cells that cannot respond to TGF-β escape control by CD4+ CD25+ regulatory T cells. J Exp Med. 2005;201(5):737–46.

    PubMed  PubMed Central  Google Scholar 

  42. Hilchey SP, De A, Rimsza LM, Bankert RB, Bernstein SH. Follicular lymphoma intratumoral CD4+CD25+GITR+ regulatory T cells potently suppress CD3/CD28-costimulated autologous and allogeneic CD8+CD25- and CD4+CD25- T cells. J Immunol. 2007;178(7):4051–61.

    CAS  PubMed  Google Scholar 

  43. Strauss L, Bergmann C, Szczepanski M, Gooding W, Johnson JT, Whiteside TL. A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-β1 mediates suppression in the tumor microenvironment. Clin Cancer Res. 2007;13(15):4345–54.

    CAS  PubMed  Google Scholar 

  44. Kursar M, Koch M, Mittrucker H-W, Nouailles G, Bonhagen K, Kamradt T, et al. Cutting edge: regulatory T cells prevent efficient clearance of Mycobacterium tuberculosis. J Immunol. 2007;178(5):2661–5.

    CAS  PubMed  Google Scholar 

  45. Li MO, Wan YY, Flavell RA. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity. 2007;26(5):579–91.

    CAS  PubMed  Google Scholar 

  46. Clayton A, Mitchell JP, Court J, Mason MD, Tabi Z. Human tumor-derived exosomes selectively impair lymphocyte responses to interleukin-2. Cancer Res. 2007;67(15):7458–66.

    CAS  PubMed  Google Scholar 

  47. Xia ZW, Xu LQ, Zhong WW, Wei JJ, Li NL, Shao J, et al. Heme oxygenase-1 attenuates ovalbumin-induced airway inflammation by up-regulation of FoxP3 T-regulatory cells, interleukin-10, and membrane-bound transforming growth factor-β1. Am J Pathol. 2007;171(6):1904–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature. 2007;450:566–9.

    CAS  PubMed  Google Scholar 

  49. Shen P, Roch T, Lampropoulou V, O’Connor RA, Stervbo U, Hilgenberg E, et al. IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases. Nature. 2014;507(7492):366–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kochetkova I, Golden S, Holderness K, Callis G, Pascual DW. IL-35 stimulation of CD39+ regulatory T cells confers protection against collagen II-induced arthritis via the production of IL-10. J Immunol. 2010;184(12):7144–53.

    CAS  PubMed  Google Scholar 

  51. Grossman WJ, Verbsky JW, Barchet W, Colonna M, Atkinson JP, Ley TJ. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity. 2004;21(4):589–601.

    CAS  PubMed  Google Scholar 

  52. Gondek DC, Lu L-F, Quezada SA, Sakaguchi S, Noelle RJ. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J Immunol. 2005;174(4):1783–6.

    CAS  PubMed  Google Scholar 

  53. Zhao D-M, Thornton AM, DiPaolo RJ, Shevach EM. Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood. 2006;107:3925–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Josefowicz SZ, Lu L-F, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gondek DC, DeVries V, Nowak EC, Lu L-F, Bennett KA, Scott ZA, et al. Transplantation survival is maintained by granzyme B+ regulatory cells and adaptive regulatory T cells. J Immunol. 2008;181(7):4752–60.

    CAS  PubMed  Google Scholar 

  56. Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol. 2012;12(9):623–35.

    CAS  PubMed  Google Scholar 

  57. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Venken K, Hellings N, Thewissen M, Somers V, Hensen K, Rummens J-L, et al. Compromised CD4+CD25high regulatory T-cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level. Immunology. 2008;123(1):79–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Dominguez-Villar M, Hafler DA. Regulatory T cells in autoimmune disease. Nat Immunol. 2018;19:665–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Rolak LA. Multiple sclerosis: it’s not the disease you thought it was. Clin Med Res. 2003;1:57–60.

    PubMed  PubMed Central  Google Scholar 

  61. Browning V, Joseph M, Sedrak M. Multiple sclerosis: a comprehensive review for the physician assistant. J Am Acad Phys Assist. 2012;25(8):24–9.

    Google Scholar 

  62. Ascherio A, Munger K. Epidemiology of multiple sclerosis: from risk factors to prevention. Semin Neurol. 2008;28(1):017–28.

    Google Scholar 

  63. Goldenberg MM. Multiple sclerosis review. P T. 2012;37(3):175–84.

    PubMed  PubMed Central  Google Scholar 

  64. Frohman EM, Racke MK, Raine CS. Multiple sclerosis — the plaque and its pathogenesis. N Engl J Med. 2006;354:942–55.

    CAS  PubMed  Google Scholar 

  65. Bjartmar C, Yin X, Trapp BD. Axonal pathology in myelin disorders. J Neurocytol. 1999;28(4–5):383–95.

    CAS  PubMed  Google Scholar 

  66. Steinman L. Immunology of relapse and remission in multiple sclerosis. Annu Rev Immunol. 2014;32:257–81.

    CAS  PubMed  Google Scholar 

  67. Duffy SS, Keating BA, Perera CJ, Moalem-Taylor G. The role of regulatory T cells in nervous system pathologies. J Neurosci Res. 2017;96(6):951–68.

    PubMed  Google Scholar 

  68. Korn T, Reddy J, Gao W, Bettelli E, Awasthi A, Petersen TR, et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med. 2007;13(4):423–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. McGeachy MJ, Stephens LA, Anderton SM. Natural recovery and protection from autoimmune encephalomyelitis: contribution of CD4+CD25+ regulatory cells within the central nervous system. J Immunol. 2005;175(5):3025–32.

    CAS  PubMed  Google Scholar 

  70. Matsushita T, Horikawa M, Iwata Y, Tedder TF. Regulatory B cells (B10 cells) and regulatory T cells have independent roles in controlling experimental autoimmune encephalomyelitis initiation and late-phase immunopathogenesis. J Immunol. 2010;185(4):2240–52. https://doi.org/10.4049/jimmunol.1001307.

    Article  CAS  PubMed  Google Scholar 

  71. O’Connor RA, Malpass KH, Anderton SM. The inflamed central nervous system drives the activation and rapid proliferation of Foxp3+ regulatory T cells. J Immunol. 2007;179(2):958–66.

    PubMed  Google Scholar 

  72. Koutrolos M, Berer K, Kawakami N, Wekerle H, Krishnamoorthy G. Treg cells mediate recovery from EAE by controlling effector T cell proliferation and motility in the CNS. Acta Neuropathol Commun. 2014;2:163.

    PubMed  PubMed Central  Google Scholar 

  73. Haas J, Hug A, Viehöver A, Fritzsching B, Falk CS, Filser A, et al. Reduced suppressive effect of CD4+CD25high regulatory T cells on the T cell immune response against myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. Eur J Immunol. 2005;35(11):3343–52.

    CAS  PubMed  Google Scholar 

  74. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med. 2004;199(7):971.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Putheti P, Pettersson A, Soderstrom M, Link H, Huang YM. Circulating CD4+CD25+ T regulatory cells are not altered in multiple sclerosis and unaffected by disease-modulating drugs. J Clin Immunol. 2004;24(2):155–61.

    CAS  PubMed  Google Scholar 

  76. Bjerg L, Brosbol-Ravnborg A, Torring C, Dige A, Bundgaard B, Petersen T, et al. Altered frequency of T regulatory cells is associated with disability status in relapsing-remitting multiple sclerosis patients. J Neuroimmunol. 2012;249(1–2):76–82.

    CAS  PubMed  Google Scholar 

  77. Kouchaki E, Salehi M, Sharif MR, Nikoueinejad H, Akbari H. Numerical status of CD4 + CD25 + FoxP3 + and CD8 + CD28 - regulatory T cells in multiple sclerosis. Iran J Basic Med Sci. 2014;17(3):250–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Libera DD, Di Mitri D, Bergami A, Centonze D, Gasperini C, Grasso MG, et al. T regulatory cells are markers of disease activity in multiple sclerosis patients. PLoS One. 2011;6(6) https://doi.org/10.1371/journal.pone.0021386.

  79. Fletcher JM, Lonergan R, Costelloe L, Kinsella K, Moran B, O’Farrelly C, et al. CD39+Foxp3+ regulatory T cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis. J Immunol. 2009;183(11):7602–10.

    CAS  PubMed  Google Scholar 

  80. Noori-Zadeh A, Mesbah-Namin SA, Bistoon-Beigloo S, Bakhtiyari S, Abbaszadeh H-A, Darabi S, et al. Regulatory T cell number in multiple sclerosis patients: a meta-analysis. Mult Scler Relat Disord. 2016;5:73–6.

    PubMed  Google Scholar 

  81. Dominguez-Villar M, Baecher-Allan CM, Hafler DA. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat Med. 2011;17(6):673–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Balint B, Haas J, Schwarz A, Jarius S, Fürwentsches A, Engelhardt K, et al. T-cell homeostasis in pediatric multiple sclerosis: old cells in young patients. Neurology. 2013;81(9):784–92.

    PubMed  Google Scholar 

  83. Dombrowski Y, O’Hagan T, DIttmer M, Penalva R, Mayoral SR, Bankhead P, et al. Regulatory T cells promote myelin regeneration in the central nervous system. Nat Neurosci. 2017;20(5):674–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Leask A, Abraham DJ. All in the CCN family: essential matricellular signaling modulators emerge from the bunker. J Cell Sci. 2006;119(23):4803–10.

    CAS  PubMed  Google Scholar 

  85. Lin CG, Leu SJ, Chen N, Tebeau CM, Lin SX, Yeung CY, et al. CCN3 (NOV) is a novel angiogenic regulator of the CCN protein family. J Biol Chem. 2003;278(26):24200–8.

    CAS  PubMed  Google Scholar 

  86. Wang X, He H, Wu X, Hu J, Tan Y. Promotion of dentin regeneration via CCN3 modulation on Notch and BMP signaling pathways. Biomaterials. 2014;35(9):2720–9.

    CAS  PubMed  Google Scholar 

  87. Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG. The spectrum of neuromyelitis optica. Lancet Neurol. 2007;6:805–15.

    CAS  PubMed  Google Scholar 

  88. Bradl M, Lassmann H. Experimental models of neuromyelitis optica. Brain Pathol. 2014;24(1):74-82.

    Google Scholar 

  89. Ghezzi A, Bergamaschi R, Martinelli V, Trojano M, Tola MR, Merelli E, et al. Clinical characteristics, course and prognosis of relapsing Devic’s neuromyelitis optica. J Neurol. 2004;251(1):47–52.

    PubMed  Google Scholar 

  90. Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85:177–89.

    PubMed  PubMed Central  Google Scholar 

  91. De Carvalho Jennings Pereira WL, EMV R, Kallaur AP, Kaimen-Maciel DR. Epidemiological, clinical, and immunological characteristics of neuromyelitis optica: a review. J Neurol Sci. 2015;355:7–17.

    Google Scholar 

  92. Takahashi T, Fujihara K, Nakashima I, Misu T, Miyazawa I, Nakamura M, et al. Anti-aquaporin-4 antibody is involved in the pathogenesis of NMO: a study on antibody titre. Brain. 2007;130(5):1235–43.

    PubMed  Google Scholar 

  93. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med. 2005;202(4):473–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Jarius S, Paul F, Franciotta D, De Seze J, Münch C, Salvetti M, et al. Neuromyelitis optica spectrum disorders in patients with myasthenia gravis: ten new aquaporin-4 antibody positive cases and a review of the literature. Mult Scler J. 2012;18(8):1135–43.

    CAS  Google Scholar 

  95. Linhares UC, Schiavoni PB, Barros PO, Kasahara TM, Teixeira B, Ferreira TB, et al. The ex vivo production of IL-6 and IL-21 by CD4+ T cells is directly associated with neurological disability in neuromyelitis optica patients. J Clin Immunol. 2013;33(1):179–89.

    CAS  PubMed  Google Scholar 

  96. Matsuya N, Komori M, Nomura K, Nakane S, Fukudome T, Goto H, et al. Increased T-cell immunity against aquaporin-4 and proteolipid protein in neuromyelitis optica. Int Immunol. 2011;23(9):565–73.

    CAS  PubMed  Google Scholar 

  97. Uzawa A, Mori M, Arai K, Sato Y, Hayakawa S, Masuda S, et al. Cytokine and chemokine profiles in neuromyelitis optica: significance of interleukin-6. Mult Scler. 2010;16(12):1443–52.

    CAS  PubMed  Google Scholar 

  98. Ikeguchi R, Shimizu Y, Suzuki S, Shimizu S, Kabasawa C, Hashimoto S, et al. Japanese cases of neuromyelitis optica spectrum disorder associated with myasthenia gravis and a review of the literature. Clin Neurol Neurosurg. 2014;125:217–21.

    PubMed  Google Scholar 

  99. Fattorossi A, Battaglia A, Buzzonetti A, Ciaraffa F, Scambia G, Evoli A. Circulating and thymic CD4+ CD25+ T regulatory cells in myasthenia gravis: effect of immunosuppressive treatment. Immunology. 2005;116(1):134–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zhang Y, Wang HB, Chi LJ, Wang WZ. The role of FoxP3+CD4+CD25hi Tregs in the pathogenesis of myasthenia gravis. Immunol Lett. 2009;122(1):52–7.

    CAS  PubMed  Google Scholar 

  101. Thiruppathi M, Rowin J, Ganesh B, Sheng JR, Prabhakar BS, Meriggioli MN. Impaired regulatory function in circulating CD4+CD25highCD127low/- T cells in patients with myasthenia gravis. Clin Immunol. 2012;145(3):209–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Varrin-Doyer M, Spencer CM, Schulze-Topphoff U, Nelson PA, Stroud RM, Bruce BA, et al. Aquaporin 4-specific T cells in neuromyelitis optica exhibit a Th17 bias and recognize Clostridium ABC transporter. Ann Neurol. 2012;72(1):53–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Brill L, Lavon I, Vaknin Dembinsky A. Neuromyelitis optica and the role of Foxp3+ regulatory T cells. ECTRIMS. 2018;24:836.

    Google Scholar 

  104. Bennett JL, Lam C, Kalluri SR, Saikali P, Bautista K, Dupree C, et al. Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol. 2009;66(5):617–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Bradl M, Misu T, Takahashi T, Watanabe M, Mader S, Reindl M, et al. Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo. Ann Neurol. 2009;66(5):630–43.

    CAS  PubMed  Google Scholar 

  106. Kinoshita M, Nakatsuji Y, Kimura T, Moriya M, Takata K, Okuno T, et al. Neuromyelitis optica: passive transfer to rats by human immunoglobulin. Biochem Biophys Res Commun. 2009;386(4):623–7.

    CAS  PubMed  Google Scholar 

  107. Ratelade J, Bennett JL, Verkman AS. Intravenous neuromyelitis optica autoantibody in mice targets aquaporin-4 in peripheral organs and area postrema. PLoS One. 2011;6(11) https://doi.org/10.1371/journal.pone.0027412.

  108. Jones MV, Collongues N, De Seze J, Kinoshita M, Nakatsuji Y, Levy M. Review of animal models of neuromyelitis optica. Mult Scler Relat Disord. 2012;1:174–9.

    PubMed  PubMed Central  Google Scholar 

  109. Davoudi V, Keyhanian K, Bove RM, Chitnis T. Immunology of neuromyelitis optica during pregnancy. Neurol Neuroimmunol NeuroInflamm. 2016;3 https://doi.org/10.1212/NXI.0000000000000288.

  110. Bar-Or A, Steinman L, Behne JM, Benitez-Ribas D, Chin PS, Clare-Salzler M, et al. Restoring immune tolerance in neuromyelitis optica. Neurol Neuroimmunol Neuroinflamm. 2016;3(5):e277.

    PubMed  PubMed Central  Google Scholar 

  111. Blat D, Zigmond E, Alteber Z, Waks T, Eshhar Z. Suppression of murine colitis and its associated cancer by carcinoembryonic antigen-specific regulatory T cells. Mol Ther. 2014;22(5):1018–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kim YC, Zhang AH, Su Y, Rieder SA, Rossi RJ, Ettinger RA, et al. Engineered antigen-specific human regulatory T cells: immunosuppression of FVIII-specific T- and B-cell responses. Blood. 2015;125(7):1107–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Shimazaki H, Ando Y, Nakano I, Dalmau J. Reversible limbic encephalitis with antibodies against the membranes of neurones of the hippocampus. BMJ Case Rep. 2009;78(3) https://doi.org/10.1136/jnnp.2006.104513.

  114. Dale RC, de Sousa C, Chong WK, Cox TC, Harding B, Neville BG. Acute disseminated encephalomyelitis, multiphasic disseminated encephalomyelitis and multiple sclerosis in children. Brain. 2000;123(Pt 12):2407–22.

    PubMed  Google Scholar 

  115. Steiner I, Kennedy PGE. Acute disseminated encephalomyelitis: current knowledge and open questions. J Neurovirol. 2015;21(5):473–9.

    PubMed  PubMed Central  Google Scholar 

  116. Koelman DLH, Mateen FJ. Acute disseminated encephalomyelitis: current controversies in diagnosis and outcome. J Neurol. 2015;262:2013–24.

    CAS  PubMed  Google Scholar 

  117. Tenembaum S, Chamoles N, Fejerman N. Acute disseminated encephalomyelitis: a long-term follow-up study of 84 pediatric patients. Neurology. 2002;59(8):1224–31.

    PubMed  Google Scholar 

  118. Hynson JL, Kornberg AJ, Coleman LT, Shield L, Harvey AS, Kean MJ. Clinical and neuroradiologic features of acute disseminated encephalomyelitis in children. Neurology. 2001;56(10):1308–12.

    CAS  PubMed  Google Scholar 

  119. Mikaeloff Y, Caridade G, Husson B, Suissa S, Tardieu M. Acute disseminated encephalomyelitis cohort study: prognostic factors for relapse. Eur J Paediatr Neurol. 2007;11(2):90–5.

    PubMed  Google Scholar 

  120. Torisu H, Kira R, Ishizaki Y, Sanefuji M, Yamaguchi Y, Yasumoto S, et al. Clinical study of childhood acute disseminated encephalomyelitis, multiple sclerosis, and acute transverse myelitis in Fukuoka Prefecture, Japan. Brain Dev. 2010;32(6):454–62.

    PubMed  Google Scholar 

  121. Cohen O, Steiner-Birmanns B, Biran I, Abramsky O, Honigman S, Steiner I. Recurrence of acute disseminated encephalomyelitis at the previously affected brain site. Arch Neurol. 2001;58(5):797–801.

    CAS  PubMed  Google Scholar 

  122. Young NP, Weinshenker BG, Parisi JE, Scheithauer B, Giannini C, Roemer SF, et al. Perivenous demyelination: association with clinically defined acute disseminated encephalomyelitis and comparison with pathologically confirmed multiple sclerosis. Brain. 2010;133(2):333–48.

    PubMed  PubMed Central  Google Scholar 

  123. Esposito S, Di Pietro GM, Madini B, Mastrolia MV, Rigante D. A spectrum of inflammation and demyelination in acute disseminated encephalomyelitis (ADEM) of children. Autoimmun Rev. 2015;14:923–9.

    PubMed  PubMed Central  Google Scholar 

  124. Erol I, Özkale Y, Alkan Ö, Alehan F. Acute disseminated encephalomyelitis in children and adolescents: a single center experience. Pediatr Neurol. 2013;49(4):266–73.

    PubMed  PubMed Central  Google Scholar 

  125. Tenembaum S, Chitnis T, Ness J, Hahn JS, Group IPMSS. Acute disseminated encephalomyelitis. [Review] [157 refs]. Neurology. 2007:68.

    Google Scholar 

  126. Sabayan B, Zolghadrasli A. Vasculitis and rheumatologic diseases may play role in the pathogenesis of acute disseminated encephalomyelitis (ADEM). Med Hypotheses. 2007;69(2):322–4.

    CAS  PubMed  Google Scholar 

  127. Ishizu T, Minohara M, Ichiyama T, Kira R, Tanaka M, Osoegawa M, et al. CSF cytokine and chemokine profiles in acute disseminated encephalomyelitis. J Neuroimmunol. 2006;175(1–2):52–8.

    CAS  PubMed  Google Scholar 

  128. Pröbstel AK, Dornmair K, Bittner R, Sperl P, Jenne D, Magalhaes S, et al. Antibodies to MOG are transient in childhood acute disseminated encephalomyelitis. Neurology. 2011;77(6):580–8.

    PubMed  Google Scholar 

  129. Martino D, Branson JA, Church AJ, Candler PM, Livrea P, Giovannoni G, et al. Soluble adhesion molecules in acute disseminated encephalomyelitis. Pediatr Neurol. 2005;33(4):255–8.

    PubMed  Google Scholar 

  130. Perlman S, Zhao J. Roles of regulatory T cells and IL-10 in virus-induced demyelination. J Neuroimmunol. 2017;308:6–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Anghelina D, Zhao J, Trandem K, Perlman S. Role of regulatory T cells in coronavirus-induced acute encephalitis. Virology. 2009;385(2):358–67.

    CAS  PubMed  Google Scholar 

  132. Trandem K, Anghelina D, Zhao J, Perlman S. Regulatory T cells inhibit T cell proliferation and decrease demyelination in mice chronically infected with a coronavirus. J Immunol. 2010;184(8):4391–400.

    CAS  PubMed  Google Scholar 

  133. De Aquino MTP, Puntambekar SS, Savarin C, Bergmann CC, Phares TW, Hinton DR, et al. Role of CD25+ CD4+ T cells in acute and persistent coronavirus infection of the central nervous system. Virology. 2013;447(1–3):112–20.

    PubMed  Google Scholar 

  134. Correale J, Tenembaum SN. Myelin basis protein and myelin oligodendrocyte glycoprotein T-cell repertoire in childhood and juvenile multiple sclerosis. Mult Scler. 2006;12(4):412–20.

    CAS  PubMed  Google Scholar 

  135. Lau CG, Zukin RS. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci. 2007;8:413–26.

    CAS  PubMed  Google Scholar 

  136. Florance NR, Davis RL, Lam C, Szperka C, Zhou L, Ahmad S, et al. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis in children and adolescents. Ann Neurol. 2009;66(1):11–8.

    PubMed  PubMed Central  Google Scholar 

  137. Galli J, Clardy SL, Piquet AL. NMDAR encephalitis following herpes simplex virus encephalitis. Curr Infect Dis Rep. 2017;19(1) https://doi.org/10.1007/s11908-017-0556-y.

  138. Tonomura Y, Kataoka H, Hara Y, Takamure M, Naba I, Kitauti T, et al. Clinical analysis of paraneoplastic encephalitis associated with ovarian teratoma. J Neurooncol. 2007;84(3):287–92.

    PubMed  Google Scholar 

  139. Sansing LH, Tüzün E, Ko MW, Baccon J, Lynch DR, Dalmau J. A patient with encephalitis associated with NMDA receptor antibodies. Nat Clin Pract Neurol. 2007;3(5):291–6.

    PubMed  PubMed Central  Google Scholar 

  140. Iizuka T, Sakai F, Ide T, Monzen T, Yoshii S, Iigaya M, et al. Anti-NMDA receptor encephalitis in Japan: long-term outcome without tumor removal. Neurology. 2008;70(7):504–11.

    CAS  PubMed  Google Scholar 

  141. Seki M, Suzuki S, Iizuka T, Shimizu T, Nihei Y, Suzuki N, et al. Neurological response to early removal of ovarian teratoma in anti-NMDAR encephalitis. J Neurol Neurosurg Psychiatry. 2008;79(3):324–6.

    CAS  PubMed  Google Scholar 

  142. Dalmau J, Tüzün E, Wu H, Masjuan J. Paraneoplastic anti–N-methyl-D-aspartate receptor encephalitis associated with ovarian teratoma. Ann Neurol. 2007;61(1):25–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008;7(12):1091–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Tüzün E, Zhou L, Baehring JM, Bannykh S, Rosenfeld MR, Dalmau J. Evidence for antibody-mediated pathogenesis in anti-NMDAR encephalitis associated with ovarian teratoma. Acta Neuropathol. 2009;118(6):737–43.

    PubMed  PubMed Central  Google Scholar 

  145. Camdessanché JP, Streichenberger N, Cavillon G, Rogemond V, Jousserand G, Honnorat J, et al. Brain immunohistopathological study in a patient with anti-NMDAR encephalitis. Eur J Neurol. 2011;18(6):929–31.

    PubMed  Google Scholar 

  146. Kahlfuß S, Simma N, Mankiewicz J, Bose T, Lowinus T, Klein-Hessling S, et al. Immunosuppression by N -methyl-d-aspartate receptor antagonists is mediated through inhibition of K v 1.3 and K Ca 3.1 channels in T cells. Mol Cell Biol. 2014;34(5):820–31.

    PubMed  PubMed Central  Google Scholar 

  147. Ozdemir C, Akdis M, Akdis CA. T regulatory cells and their counterparts: masters of immune regulation. Clin Exp Allergy. 2009;39:626–39.

    CAS  PubMed  Google Scholar 

  148. Newcomb DC, Boswell MG, Zhou W, Huckabee MM, Goleniewska K, Sevin CM, et al. Human TH17 cells express a functional IL-13 receptor and IL-13 attenuates IL-17A production. J Allergy Clin Immunol. 2011;127(4):1006–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Varga Z, Csepany T, Papp F, Fabian A, Gogolak P, Toth A, et al. Potassium channel expression in human CD4+regulatory and naïve T cells from healthy subjects and multiple sclerosis patients. Immunol Lett. 2009;124(2):95–101.

    CAS  PubMed  Google Scholar 

  150. Reneer MC, Estes DJ, Vélez-Ortega AC, Norris A, Mayer M, Marti F. Peripherally induced human regulatory T cells uncouple Kv1.3 activation from TCR-associated signaling. Eur J Immunol. 2011;41(11):3170–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Mahlios J, De la Herrán-Arita AK, Mignot E. The autoimmune basis of narcolepsy. Curr Opin Neurobiol. 2013;23:767–73.

    CAS  PubMed  Google Scholar 

  152. Liblau RS. Put to sleep by immune cells. Nature. 2018;562(7725):46–8.

    CAS  PubMed  Google Scholar 

  153. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell. 1998;92(4):573–85.

    CAS  PubMed  Google Scholar 

  154. de Lecea L, Kilduff TS, Peyron C, Gao X-B, Foye PE, Danielson PE, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A. 1998;95(1):322–7.

    PubMed  PubMed Central  Google Scholar 

  155. Nevsimalova S, Pisko J, Buskova J, Kemlink D, Prihodova I, Sonka K, et al. Narcolepsy: clinical differences and association with other sleep disorders in different age groups. J Neurol. 2013;260(3):767–75.

    PubMed  Google Scholar 

  156. Hartmann FJ, Bernard-Valnet R, Quériault C, Mrdjen D, Weber LM, Galli E, et al. High-dimensional single-cell analysis reveals the immune signature of narcolepsy. J Exp Med. 2016;213(12):2621–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Tafti M, Hor H, Dauvilliers Y, Lammers GJ, Overeem S, Mayer G, et al. DQB1 locus alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Sleep. 2014;37(1):19–U228.

    PubMed  PubMed Central  Google Scholar 

  158. Mignot E, Hayduk R, Grumet FC. Narcolepsy HLA DQB 1 ∗0602 is associated with cataplexy in 509 narcoleptic patients. Sleep. 2018;20(10):12–1020.

    Google Scholar 

  159. Tafti M, Lammers GJ, Dauvilliers Y, Overeem S, Mayer G, Nowak J, et al. Narcolepsy-associated HLA class I alleles implicate cell-mediated cytotoxicity. Sleep. 2016;39(3):581–7.

    PubMed  PubMed Central  Google Scholar 

  160. Ollila HM, Ravel JM, Han F, Faraco J, Lin L, Zheng X, et al. HLA-DPB1 and HLA class I confer risk of and protection from narcolepsy. Am J Hum Genet. 2015;96(1):136–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Han F, Faraco J, Dong XS, Ollila HM, Lin L, Li J, et al. Genome wide analysis of narcolepsy in China implicates novel immune loci and reveals changes in association prior to versus after the 2009 H1N1 influenza pandemic. PLoS Genet. 2013;9(10) https://doi.org/10.1371/journal.pgen.1003880.

  162. Cvetkovic-Lopes V, Bayer L, Dorsaz S, Maret S, Pradervand S, Dauvilliers Y, et al. Elevated Tribbles homolog 2-specific antibody levels in narcolepsy patients. J Clin Invest. 2010;120(3):713–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Ahmed SS, Volkmuth W, Duca J, Corti L, Pallaoro M, Pezzicoli A, et al. Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2. Sci Transl Med. 2015;7(294):294ra105.

    PubMed  Google Scholar 

  164. Bergman P, Adori C, Vas S, Kai-Larsen Y, Sarkanen T, Cederlund A, et al. Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns. Proc Natl Acad Sci. 2014;111(35):E3735–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Saariaho AH, Vuorela A, Freitag TL, Pizza F, Plazzi G, Partinen M, et al. Autoantibodies against ganglioside GM3 are associated with narcolepsy-cataplexy developing after Pandemrix vaccination against 2009 pandemic H1N1 type influenza virus. J Autoimmun. 2015;63:68–75.

    CAS  PubMed  Google Scholar 

  166. Nguyen XH, Saoudi A, Liblau RS. Vaccine-associated inflammatory diseases of the central nervous system: from signals to causation. Curr Opin Neurol. 2016;29:362–71.

    CAS  PubMed  Google Scholar 

  167. Liblau RS, Vassalli A, Seifinejad A, Tafti M. Hypocretin (orexin) biology and the pathophysiology of narcolepsy with cataplexy. Lancet Neurol. 2015;14(3):318–28.

    CAS  PubMed  Google Scholar 

  168. Degn M, Kornum BR. Type 1 narcolepsy: a CD8+T cell-mediated disease? Ann N Y Acad Sci. 2015;1351(1):80–8.

    CAS  PubMed  Google Scholar 

  169. De la Herrán-Arita AK, García-García F. Narcolepsy as an immune-mediated disease. Sleep Disord. 2014;2014:1–6.

    Google Scholar 

  170. Latorre D, Kallweit U, Armentani E, Foglierini M, Mele F, Cassotta A, et al. T cells in patients with narcolepsy target self-antigens of hypocretin neurons. Nature. 2018;562:63–8.

    CAS  PubMed  Google Scholar 

  171. Bernard-Valnet R, Yshii L, Quériault C, Nguyen X-H, Arthaud S, Rodrigues M, et al. CD8 T cell-mediated killing of orexinergic neurons induces a narcolepsy-like phenotype in mice. Proc Natl Acad Sci U S A. 2016;113(39):10956–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Iijima N, Iwasaki A. Access of protective antiviral antibody to neuronal tissues requires CD4 T-cell help. Nature. 2016;533(7604):552–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Lecendreux M, Churlaud G, Pitoiset F, Regnault A, Tran TA, Liblau R, et al. Narcolepsy type 1 is associated with a systemic increase and activation of regulatory T cells and with a systemic activation of global T cells. PLoS One. 2017;12(1) https://doi.org/10.1371/journal.pone.0169836.

  174. Buckner JH. Mechanisms of impaired regulation by CD4+ CD25+ FOXP3+ regulatory T cells in human autoimmune diseases. Nat Rev Immunol. 2010;10:849–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Lindley S, Dayan CM, Bishop A, Roep BO, Peatman M, Tree TIM. Defective suppressor function in CD4+CD25+ T-cells from patients with type 1 diabetes. Diabetes. 2005;54(1):92–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gila Moalem-Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Keating, B.A., Lees, J.G., Moalem-Taylor, G. (2019). The Roles of Regulatory T Cells in Central Nervous System Autoimmunity. In: Mitoma, H., Manto, M. (eds) Neuroimmune Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-19515-1_6

Download citation

Publish with us

Policies and ethics