Skip to main content

Autoimmune Ataxias

  • Chapter
  • First Online:

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

The dramatic progress to genetically characterise the ataxias, using next-generation sequencing (NGS), has also facilitated our appreciation that a substantial number of sporadic ataxias are not due to genetic defects but likely to be immune-mediated. At the same time, the recent identification of an increasing number of antibodies linked to sporadic ataxias has aided the diagnostic pathway for immune-mediated cerebellar ataxias (IMCAs). However, the diagnosis of IMCA remains problematic if it is solely dependent on the serological screening for such antibodies and also because there is significant phenotypic overlap with non-immune forms of ataxia. In the majority of cases, serological screening for known antibodies associated with IMCA may not be readily available. In others no specific antigenic trigger or associated antibodies have been identified as yet. Therefore, recognition of IMCA relies on clinical expertise, indirect evidence of autoimmunity (additional autoimmune diseases or family history of autoimmune disease) and appropriate investigations. It is imperative to consolidate quickly such a diagnosis as therapeutic interventions can be effective in preserving the cerebellar reserve.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hadjivassiliou M, Martindale J, Shanmugarajah P, et al. Causes of progressive cerebellar ataxia: prospective evaluation of 1500 patients. J Neurol Neurosurg Psychiatry. 2016;88:301. https://doi.org/10.1136/jnnp-2016-314863.

    Article  PubMed  Google Scholar 

  2. Hadjivassiliou M. Primary autoimmune cerebellar ataxia (PACA). Adv Clin Neurosci Rehabil. 2010;9:8–11.

    Google Scholar 

  3. Hadjivassiliou M, Grunewald RA, Chattopadhyay AK, et al. Clinical, radiological, neurophysiological and neuropathological characteristics of gluten ataxia. Lancet. 1998;352:1582–5.

    CAS  PubMed  Google Scholar 

  4. Sarrigiannis PG, Hoggard N, Aeschlimann D, et al. Myoclonus ataxia and refractory coeliac disease. Cerebellum Ataxias. 2014. www.cerebellumandataxias.com/content/1/1/11

  5. Hadjivassiliou M, Grunewald RA, Sanders DS, Shanmugarajah P, Hoggard N. Effect of gluten-free diet on MR spectroscopy in gluten ataxia. Neurology. 2017;89:1–5.

    Google Scholar 

  6. Dietrich W, Ehnis T, Bauer M, et al. Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med. 1997;3:797–801.

    Google Scholar 

  7. Sárdy M, Kárpáti S, Merkl B, Paulsson M, Smyth N. Epidermal transglutaminase (TGase3) is the autoantigen of dermatitis herpetiformis. J Exp Med. 2002;195:747–57.

    PubMed  PubMed Central  Google Scholar 

  8. Hadjivassiliou M, Aeschlimann P, Strigun A, Sanders DS, Woodroofe N, Aeschlimann D. Autoantibodies in gluten ataxia recognise a novel neuronal transglutaminase. Ann Neurol. 2008;64:332–43.

    CAS  PubMed  Google Scholar 

  9. Hadjivassiliou M, Sanders DS, Grunewald RA, Woodroofe N, Boscolo S, Aeschlimann D. Gluten sensitivity: from gut to brain. Lancet Neurol. 2010;9:318–30.

    CAS  PubMed  Google Scholar 

  10. Hadjivassiliou M, Grunewald RA, Sanders DS, et al. The significance of low titre antigliadin antibodies in the diagnosis of gluten ataxia. Nutrients. 2018;10:1444. https://doi.org/10.3390/nu10101444.

    Article  CAS  PubMed Central  Google Scholar 

  11. Hadjivassiliou M, Aeschlimann P, Sanders DS, et al. Transglutaminase 6 antibodies in the diagnosis of gluten ataxia. Neurology. 2013;80:1–6.

    Google Scholar 

  12. Hadjivassiliou M, Sanders DS, Aeschlimann D. The neuroimmunology of gluten intolerance. In: Constantinescu C, et al., editors. Neuro-immuno-gastroenterology: Springer; 2016. Springer. International Publishing Switzerland

    Google Scholar 

  13. Bürk K, Melms A, Schulz JB, Dichgans J. Effectiveness of intravenous immunoglobulin therapy in cerebellar ataxia associated with gluten sensitivity. Ann Neurol. 2001;50:827–8.

    PubMed  Google Scholar 

  14. Souayah N, Chin RL, Brannagan TH, et al. Effect of intravenous immunoglobulin on cerebellar ataxia and neuropathic pain associated with celiac disease. Eur J Neurol. 2008;15:1300–3.

    CAS  PubMed  Google Scholar 

  15. Nanri K, Okita M, Takeguchi M, et al. Intravenous immunoglobulin therapy for autoantibody-positive cerebellar ataxia. Intern Med. 2009;48:783–90.

    PubMed  Google Scholar 

  16. Hadjivassiliou M, Davies-Jones GAB, Sanders DS, Grunewald RA. Dietary treatment of gluten ataxia. J Neurol Neurosurg Psychiatry. 2003;74(9):1221–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Hadjivassiliou M, Rao DG, Grunewald RA, et al. Neurological dysfunction in coeliac disease and non-coeliac gluten sensitivity. Am J Gastroenterol. 2016;111:561. https://doi.org/10.1038/ajg.2015.434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kerr DIB, Ong J. GABA receptors. Pharmacol Ther. 1995;67:187–246.

    CAS  PubMed  Google Scholar 

  19. Solimena M, Piccolo G, Martino G. Autoantibodies directed against gabaminergic nerve terminals in a patient with idiopathic late-onset cerebellar ataxia and type 1 diabetes mellitus. Clin Neuropathol. 1998;7.(Suppl:211.

    Google Scholar 

  20. Ellis TM, Atkinson MA. The clinical significance of an autoimmune response against glutamic acid decarboxylase. Nat Med. 1996;2:148–53.

    CAS  PubMed  Google Scholar 

  21. Honnorat J, Saiz A, Giometto B, et al. Cerebellar ataxia with antiglutamic acid decarboxylase antibodies. Arch Neurol. 2001;58:225–30.

    CAS  PubMed  Google Scholar 

  22. Mitoma H, Manto M, Hampe CS. Pathogenic roles of glutamic acid decarboxylase 65 autoantibodies in cerebellar ataxias. J Immunol Res. 2017; https://doi.org/10.1155/2017/2913297.

  23. Manto M, Mitoma H, Hampe CS. Anti-gad antibodies and the cerebellum: where do we stand? Cerebellum. 2018; https://doi.org/10.1007/s12311-0180986.

  24. Arino H, Gresa-Arribas N, Blanco Y, et al. Cerebellar ataxia and glutamic acid decarboxylase antibodies; immune profile and long-term effect of immunotherapy. JAMA Neurol. 2014;71(8):1009–16.

    PubMed  PubMed Central  Google Scholar 

  25. Mitoma H, Hadjivassiliou M, Honnorat J. Guidelines for treatment of immune-mediated ataxias. Cerebellum Ataxias. 2015;2:14.

    PubMed  PubMed Central  Google Scholar 

  26. Hadjivassiliou M, Boscolo S, Tongiorgi E, et al. Cerebellar ataxia as a possible organ specific autoimmune disease. Mov Disord. 2008;23(10):1270–377.

    Google Scholar 

  27. Mitoma H, Adhikari K, Aeschlimann D, et al. Consensus paper: neuroimmune mechanisms of cerebellar ataxia. Cerebellum. 2015;15:213. https://doi.org/10.1007/s12311-015-0664-x.

    Article  CAS  PubMed Central  Google Scholar 

  28. Takeguchi M, Nanri K, Okita M, et al. Efficacy of intravenous immunoglobulin for slowly progressive cerebellar atrophy. Rinsho Shinkeigaku. 2006;46:467–74.

    PubMed  Google Scholar 

  29. Jones AL, Flanagan EP, Pittock SJ, et al. Responses to and outcomes of treatment of autoimmune cerebellar ataxia in adults. JAMA Neurol. 2015;72:1304–12.

    PubMed  Google Scholar 

  30. Dalmau J, Rosenfield MR. Lancet Neurol. 2008;7:327–40.

    PubMed  PubMed Central  Google Scholar 

  31. Hadjivassiliou M, Currie S, Hoggard N. MR spectroscopy in paraneoplastic cerebellar degeneration. J Neuroradiol. 2013;40:310. https://doi.org/10.1016/j.neurorad.2012.08.003.

    Article  PubMed  Google Scholar 

  32. Graus F, Dalmau J. Autoantibodies and neuronal autoimmune disorders of the CNS. J Neurol Sci. 2010;257:509–17.

    CAS  Google Scholar 

  33. Albert ML, Austin LM, Darnell RB. Detection and treatment of activated T cells in cerebrospinal fluid of patients with paraneoplastic cerebellar degeneration. Ann Neurol. 2010;47:9–17.

    Google Scholar 

  34. Hadjivassiliou M, Alder SJ, Van Beek EJR, et al. PET scan in clinically suspected paraneoplastic neurological syndromes: a six year prospective study in a regional neuroscience unit. Acta Neurol Scand. 2009;119:186–93.

    CAS  PubMed  Google Scholar 

  35. Pang KK, De Sousa C, Lang B, et al. A prospective study of the presentation and management of dancing eye syndrome/opsoclonus myoclonus syndrome in the UK. Eur J Paediatr Neurol. 2009;14:156–61.

    PubMed  Google Scholar 

  36. Blackburn DJ, Forbes M, Unwin Z, Hoggard N, Hadjivassiliou M, Sarrigiannis PG. Exaggerated startle in post-infectious opsoclonus myoclonus syndrome. Clin Neurophysiol. 2018;129:1372–3.

    PubMed  Google Scholar 

  37. Deconinck N, Scaillon M, Segers V, et al. Opsoclonus-myoclonus associated with celiac disease. Pediatr Neurol. 2006;34:312–4.

    PubMed  Google Scholar 

  38. Bataller L, Graus F, Saiz A, Vilchez JJ. Clinical outcome in adult onset idiopathic or paraneoplastic opsoclonus-myoclonus. Brain. 2001;124:437–43.

    CAS  PubMed  Google Scholar 

  39. Pranzatelli MR, Travelstead BS, Tate ED, et al. B and T-cell markers in opsoclonus-myoclonus syndrome. Neurology. 2004;62:1526–32.

    CAS  PubMed  Google Scholar 

  40. Pranzatelli MR, Tate ED, Swan JA, et al. B cell depletion therapy for new-onset opsoclonus myolconus. Mov Disord. 2010;25:238–42.

    PubMed  Google Scholar 

  41. Boronat A, Gelfand JM, Gresha-Arribas N, et al. Encephalitis and antibodies to DPPX, a subunit of Kv4.2 potassium channels. Ann Neurol. 2013;73:120–8.

    CAS  PubMed  Google Scholar 

  42. Balint B, Jarius S, Nagel S, et al. Progressive encephalomyelitis with rigidity and myoclonus: a new variant with DPPX antibodies. Neurology. 2014;82:1521–152869.

    CAS  PubMed  Google Scholar 

  43. Tobin WO, Lennon VA, Komorowski L, et al. DPPX potassium channel antibody; frequency, clinical accompaniments and outcomes in 20 patients. Neurology. 2014;83:1797–803.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zis P, Rao DG, Hoggard N, et al. Anti-MAG associated cerbellar ataxia and response to rituximab. J Neurol. 2018;265:115–8.

    CAS  PubMed  Google Scholar 

  45. Pittock SJ, Debruyne J, Krecke KN, et al. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain. 2010;133:2626–34.

    PubMed  Google Scholar 

  46. Dudesek A, Rimmele E, Tesar S, et al. CLIPPERS: chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids. Review of an increasingly recognized entity within the spectrum of inflammatory central nervous system disorders. Clin Exp Immunol. 2014;175:385–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Shiboski SC, Shiboski CH, Criswell LA, et al. American College of Rheumatology Classification Criteria for Sjogren’s syndrome: a data-driven, expert consensus approach in the Sjogren’s International Collaborative Clinical Alliance Cohort. Arthritis Care Res. 2012;64:475–87.

    CAS  Google Scholar 

  48. Alexander GE, Stevens MB, Provost TT, et al. Sjogren’s syndrome: central nervous system manifestations. Neurology. 1981;31:1391–6.

    CAS  PubMed  Google Scholar 

  49. Alexander EL, Malinow K, Lejewski JE, et al. Primary Sjogren’s syndrome with central nervous system disease mimicking multiple sclerosis. Ann Intern Med. 1986;104:323–30.

    CAS  PubMed  Google Scholar 

  50. Mori K, Lijima M, Koike H, et al. The wide spectrum of clinical manifestations in Sjogren’s syndrome-associated neuropathy. Brain. 2005;128:2518–34.

    PubMed  Google Scholar 

  51. Attwood W, Poser CM. Neurologic complications of Sjogren’s syndrome. Neurology. 1961;11:1034–41.

    CAS  PubMed  Google Scholar 

  52. Yang H, Sun Y, Zhao L, Zhang X, Zhang F. Cerebellar involvement in patients with primary Sjogren’s syndrome: diagnosis and treatment. Clin Rheumatol. 2018;37:1207–13.

    PubMed  Google Scholar 

  53. Alexander EL, Ranzenbach MR, Kumar AJ, et al. Anti-Ro autoantibodies in central nervous system disease associated with Sjogren’s syndrome: clinical, neuroimaging and angiographic correlates. Neurology. 1994;44:899–908.

    CAS  PubMed  Google Scholar 

  54. Casciato S, Mascia A, Quarato PP, D’Aniello A, Scoppetta C, Di Gennaro G. Subacute cerebellar ataxia as presenting symptom of systemic lupus erythematosus. Eur Rev Med Pharmacol Sci. 2018;22(21):7401–3.

    CAS  PubMed  Google Scholar 

  55. Manto MU, Rondeaux P, Jacquy J, Hildebrand JG. Subacute pancerebellar syndrome associated with systemic lupus erythematosus. Clin Neurol Neurosurg. 1996;98(2):157–60.

    CAS  PubMed  Google Scholar 

  56. Chattopadhyay P, Dhua D, Philips CA, Saha S. Acute cerebellar ataxia in lupus. Lupus. 2011;20(12):1312–5.

    CAS  PubMed  Google Scholar 

  57. Mitoma H, Manto M, Hampe CS. Time is cerebellum. Cerebellum. 2018;17:387–91.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marios Hadjivassiliou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hadjivassiliou, M., Mitoma, H., Manto, M. (2019). Autoimmune Ataxias. In: Mitoma, H., Manto, M. (eds) Neuroimmune Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-19515-1_19

Download citation

Publish with us

Policies and ethics