Skip to main content

Atypical Inflammatory Demyelinating Syndromes of the Central Nervous System

  • Chapter
  • First Online:
Neuroimmune Diseases

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

The atypical demyelinating syndromes are a group of conditions, characterised pathologically by demyelination, that form part of the differential diagnosis of multiple sclerosis (MS) but differ from it due to variations in clinical presentation, MRI appearance, pathology, and response to treatment. The potential for some of these syndromes to overlap with conventional MS means that diagnostic uncertainties are common and therapeutic decision-making often focuses on whether to commence MS disease-modifying therapies (DMTs) or other immunosuppression. In this chapter, the spectrum of atypical demyelinating diseases is reviewed. I discuss the difficulties in diagnosing and distinguishing between conditions such as acute disseminated encephalomyelitis (ADEM), tumefactive demyelination, Baló’s concentric sclerosis, Marburg’s multiple sclerosis, and Schilder’s diffuse myelinoclastic sclerosis and contrast these conditions with conventional MS. Advances in magnetic resonance imaging (MRI) and immunobiology may prove useful in our future understanding of these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brownlee WJ, Hardy TA, Fazekas F, Miller DH. Diagnosis of multiple sclerosis: progress and challenges. Lancet. 2017;389(10076):1336–46.

    PubMed  Google Scholar 

  2. Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG. The spectrum of neuromyelitis optica. Lancet Neurol. 2007;6(9):805–15.

    CAS  PubMed  Google Scholar 

  3. Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, de Seze J, Fujihara K, Greenberg B, Jacob A, Jarius S, Lana-Peixoto M, Levy M, Simon JH, Tenembaum S, Traboulsee AL, Waters P, Wellik KE, Weinshenker BG. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85(2):177–89. https://doi.org/10.1212/WNL.0000000000001729. Epub 2015 Jun 19

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hardy TA. How should we diagnose acute disseminated encephalomyelitis. Dev Med Child Neurol. 2018;60(11):1070. https://doi.org/10.1111/dmcn.13940. Epub 2018 Jun 21

    Article  PubMed  Google Scholar 

  5. Hardy TA, Reddel SW, Barnett MH, Palace J, Lucchinetti CF, Weinshenker BG. Atypical inflammatory demyelinating syndromes of the CNS. Lancet Neurol. 2016;15(9):967–81.

    CAS  PubMed  Google Scholar 

  6. Tenembaum S, Chamoles N, Fejerman N. Acute disseminated encephalomyelitis: a long-term follow-up study of 84 pediatric patients. Neurology. 2002;59(8):1224–31.

    PubMed  Google Scholar 

  7. Boesen MS, Blinkenberg M, Koch-Henriksen N, Thygesen LC, Uldall PV, Magyari M, Born AP. Implications of the International Paediatric Multiple Sclerosis Study Group consensus criteria for paediatric acute disseminated encephalomyelitis: a nationwide validation study. Dev Med Child Neurol. 2018;60(11):1123–31. https://doi.org/10.1111/dmcn.13798. Epub 2018 May 10

    Article  PubMed  Google Scholar 

  8. Xiong CH, Yan Y, Liao Z, Peng SH, Wen HR, Zhang YX, Chen SH, Li J, Chen HY, Feng XW, Yao HQ, Huang L, Zhang L. Epidemiological characteristics of acute disseminated encephalomyelitis in Nanchang, China: a retrospective study. BMC Public Health. 2014;14:111.

    PubMed  PubMed Central  Google Scholar 

  9. Tenembaum S, Chitnis T, Ness J, Hahn JS, International Pediatric MS Study Group. Acute disseminated encephalomyelitis. Neurology. 2007;68(16 Suppl 2):S23–36.

    PubMed  Google Scholar 

  10. Krupp LB, Tardieu M, Amato MP, Banwell B, Chitnis T, Dale RC, Ghezzi A, Hintzen R, Kornberg A, Pohl D, Rostasy K, Tenembaum S, Wassmer E, International Pediatric Multiple Sclerosis Study Group. International Pediatric Multiple Sclerosis Study Group criteria for pediatric multiple sclerosis and immune-mediated central nervous system demyelinating disorders: revisions to the 2007 definitions. Mult Scler. 2013;19(10):1261–7.

    PubMed  Google Scholar 

  11. Dale RC, de Sousa C, Chong WK, Cox TC, Harding B, Neville BG. Acute disseminated encephalomyelitis, multiphasic disseminated encephalomyelitis and multiple sclerosis in children. Brain. 2000;123(Pt 12):2407–22.

    PubMed  Google Scholar 

  12. Mikaeloff Y, Caridade G, Husson B, Suissa S, Tardieu M, Neuropediatric KIDSEP Study Group of the French Neuropediatric Society. Acute disseminated encephalomyelitis cohort study: prognostic factors for relapse. Eur J Paediatr Neurol. 2007;11(2):90–5.

    PubMed  Google Scholar 

  13. Duignan S, Wright S, Rossor T, Cazabon J, Gilmour K, Ciccarelli O, Wassmer E, Lim M, Hemingway C, Hacohen Y. Myelin oligodendrocyte glycoprotein and aquaporin-4 antibodies are highly specific in children with acquired demyelinating syndromes. Dev Med Child Neurol. 2018;60(9):958–62. https://doi.org/10.1111/dmcn.13703. Epub 2018 Feb 22

    Article  PubMed  Google Scholar 

  14. Marin SE, Callen DJ. The magnetic resonance imaging appearance of monophasic acute disseminated encephalomyelitis: an update post application of the 2007 consensus criteria. Neuroimaging Clin N Am. 2013;23(2):245–66.

    PubMed  PubMed Central  Google Scholar 

  15. Zuccoli G, Panigrahy A, Sreedher G, Bailey A, Laney EJ 4th, La Colla L, Alper G. Vasogenic edema characterizes pediatric acute disseminated encephalomyelitis. Neuroradiology. 2014;56(8):679–84.

    PubMed  Google Scholar 

  16. Richer LP, Sinclair DB, Bhargava R. Neuroimaging features of acute disseminated encephalomyelitis in childhood. Pediatr Neurol. 2005;32(1):30–6.

    PubMed  Google Scholar 

  17. Hynson JL, Kornberg AJ, Coleman LT, Shield L, Harvey AS, Kean MJ. Clinical and neuroradiologic features of acute disseminated encephalomyelitis in children. Neurology. 2001;56(10):1308–12.

    CAS  PubMed  Google Scholar 

  18. Atzori M, Battistella PA, Perini P, Calabrese M, Fontanin M, Laverda AM, Suppiej A, Drigo P, Grossi P, Rinaldi L, Gallo P. Clinical and diagnostic aspects of multiple sclerosis and acute monophasic encephalomyelitis in pediatric patients: a single centre prospective study. Mult Scler. 2009;15(3):363–70. https://doi.org/10.1177/1352458508098562. Epub 2008 Nov 5

    Article  CAS  PubMed  Google Scholar 

  19. Koelman DLH, Benkeser DC, Klein JP, Mateen FJ. Acute disseminated encephalomyelitis: prognostic value of early follow-up brain MRI. J Neurol. 2017;264(8):1754–62.

    PubMed  Google Scholar 

  20. Wong YYM, Hacohen Y, Armangue T, Wassmer E, Verhelst H, Hemingway C, van Pelt ED, Catsman-Berrevoets CE, Hintzen RQ, Deiva K, Lim MJ, Rostásy K, Neuteboom RF. Paediatric acute disseminated encephalomyelitis followed by optic neuritis: disease course, treatment response and outcome. Eur J Neurol. 2018;25(5):782–6.

    CAS  PubMed  Google Scholar 

  21. López-Chiriboga AS, Majed M, Fryer J, Dubey D, McKeon A, Flanagan EP, Jitprapaikulsan J, Kothapalli N, Tillema JM, Chen J, Weinshenker B, Wingerchuk D, Sagen J, Gadoth A, Lennon VA, Keegan BM, Lucchinetti C, Pittock SJ. Association of MOG-IgG serostatus with relapse after acute disseminated encephalomyelitis and proposed diagnostic criteria for MOG-IgG-associated disorders. JAMA Neurol. 2018;75(11):1355–63. https://doi.org/10.1001/jamaneurol.2018.1814.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huppke P, Rostasy K, Karenfort M, Huppke B, Seidl R, Leiz S, Reindl M, Gärtner J. Acute disseminated encephalomyelitis followed by recurrent or monophasic optic neuritis in pediatric patients. Mult Scler. 2013;19(7):941–6.

    PubMed  Google Scholar 

  23. Popescu BF, Lucchinetti CF. Pathology of demyelinating diseases. Annu Rev Pathol. 2012;7:185–217.

    CAS  PubMed  Google Scholar 

  24. Young NP, Weinshenker BG, Parisi JE, Scheithauer B, Giannini C, Roemer SF, Thomsen KM, Mandrekar JN, Erickson BJ, Lucchinetti CF. Perivenous demyelination: association with clinically defined acute disseminated encephalomyelitis and comparison with pathologically confirmed multiple sclerosis. Brain. 2010;133(Pt 2):333–48.

    PubMed  PubMed Central  Google Scholar 

  25. Keegan M, Pineda AA, McClelland RL, Darby CH, Rodriguez M, Weinshenker BG. Plasma exchange for severe attacks of CNS demyelination: predictors of response. Neurology. 2002;58(1):143–6.

    CAS  PubMed  Google Scholar 

  26. Ketelslegers IA, Visser IE, Neuteboom RF, Boon M, Catsman-Berrevoets CE, Hintzen RQ. Disease course and outcome of acute disseminated encephalomyelitis is more severe in adults than in children. Mult Scler. 2011;17(4):441–8.

    CAS  PubMed  Google Scholar 

  27. Hurst EW. Acute hemorrhagic leukoencephalitis: a previously undefined entity. Med J Aust. 1941;2:1–6.

    Google Scholar 

  28. Kao HW, Alexandru D, Kim R, Yanni D, Hasso AN. Value of susceptibility-weighted imaging in acute hemorrhagic leukoencephalitis. J Clin Neurosci. 2012;19:1740–1.

    PubMed  Google Scholar 

  29. Sarbu N, Shih RY, Jones RV, Horkayne-Szakaly I, Oleaga L, Smirniotopoulos JG. White matter diseases with radiologic-pathologic correlation. Radiographics. 2016;36(5):1426–47.

    PubMed  Google Scholar 

  30. Abou Zeid NE, Burns JD, Wijdicks EF, Giannini C, Keegan BM. Atypical acute hemorrhagic leukoencephalitis (Hurst’s disease) presenting with focal hemorrhagic brainstem lesion. Neurocrit Care. 2010;12(1):95–7.

    PubMed  Google Scholar 

  31. Robinson CA, Adiele RC, Tham M, Lucchinetti CF, Popescu BF. Early and widespread injury of astrocytes in the absence of demyelination in acute haemorrhagic leukoencephalitis. Acta Neuropathol Commun. 2014;2:52. https://doi.org/10.1186/2051-5960-2-52.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Neilson DE. The interplay of infection and genetics in acute necrotizing encephalopathy. Curr Opin Pediatr. 2010;22(6):751–7.

    PubMed  Google Scholar 

  33. Hardy TA, Chataway J. Tumefactive demyelination: an approach to diagnosis and management. J Neurol Neurosurg Psychiatry. 2013;84(9):1047–53.

    PubMed  Google Scholar 

  34. Tremblay MA, Villanueva-Meyer JE, Cha S, Tihan T, Gelfand JM. Clinical and imaging correlation in patients with pathologically confirmed tumefactive demyelinating lesions. J Neurol Sci. 2017;381:83–7.

    PubMed  PubMed Central  Google Scholar 

  35. Patriarca L, Torlone S, Ferrari F, Di Carmine C, Totaro R, di Cesare E, Splendiani A. Is size an essential criterion to define tumefactive plaque? MR features and clinical correlation in multiple sclerosis. Neuroradiol J. 2016;29(5):384–9.

    PubMed  PubMed Central  Google Scholar 

  36. Sánchez P, Meca-Lallana V, Barbosa A, Manzanares R, Palmí I, Vivancos J. Tumefactive demyelinating lesions of 15 patients: clinico-radiological features, management and review of the literature. J Neurol Sci. 2017;381:32–8.

    PubMed  Google Scholar 

  37. Ramanathan S, Prelog K, Barnes EH, Tantsis EM, Reddel SW, Henderson AP, Vucic S, Gorman MP, Benson LA, Alper G, Riney CJ, Barnett M, Parratt J, Hardy TA, Leventer RJ, Merheb V, Nosadini M, Fung VS, Brilot F, Dale RC. Radiological differentiation of optic neuritis with myelin oligodendrocyte glycoprotein antibodies, aquaporin-4 antibodies, and multiple sclerosis. Mult Scler. 2016;22(4):470–82.

    CAS  PubMed  Google Scholar 

  38. Jeong IH, Kim SH, Hyun JW, Joung A, Cho HJ, Kim HJ. Tumefactive demyelinating lesions as a first clinical event: clinical, imaging, and follow-up observations. J Neurol Sci. 2015;358(1–2):118–24.

    PubMed  Google Scholar 

  39. Seewann A, Enzinger C, Filippi M, Barkhof F, Rovira A, Gass A, Miller D, Montalban X, Thompson A, Yousry T, Tintore M, de Stefano N, Palace J, Rovaris M, Polman C, Fazekas F. MAGNIMS network. MRI characteristics of atypical idiopathic inflammatory demyelinating lesions of the brain: a review of reported findings. J Neurol. 2008;255(1):1–10.

    CAS  PubMed  Google Scholar 

  40. Wallner-Blazek M, Rovira A, Fillipp M, Rocca MA, Miller DH, Schmierer K, Frederiksen J, Gass A, Gama H, Tilbery CP, Rocha AJ, Flores J, Barkhof F, Seewann A, Palace J, Yousry T, Montalban X, Enzinger C, Fazekas F. Atypical idiopathic inflammatory demyelinating lesions: prognostic implications and relation to multiple sclerosis. J Neurol. 2013;260(8):2016–22.

    CAS  PubMed  Google Scholar 

  41. Selkirk SM, Shi J. Relapsing-remitting tumefactive multiple sclerosis. Mult Scler. 2005;11(6):731–4.

    PubMed  Google Scholar 

  42. Häne A, Bargetzi M, Hewer E, et al. Recurrent tumefactive demyelination without evidence of multiple sclerosis or brain tumour. J Neurol. 2011;258(2):318–20.

    PubMed  Google Scholar 

  43. Altintas A, Petek B, Isik N, et al. Clinical and radiological characteristics of tumefactive demyelinating lesions: follow-up study. Mult Scler. 2012;18(10):1448–53.

    CAS  PubMed  Google Scholar 

  44. Lucchinetti CF, Gavrilova RH, Metz I, Parisi JE, Scheithauer BW, Weigand S, Thomsen K, Mandrekar J, Altintas A, Erickson BJ, König F, Giannini C, Lassmann H, Linbo L, Pittock SJ, Brück W. Clinical and radiographic spectrum of pathologically confirmed tumefactive multiple sclerosis. Brain. 2008;131(Pt 7):1759–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hu W, Lucchinetti CF. The pathological spectrum of CNS inflammatory demyelinating diseases. Semin Immunopathol. 2009;31(4):439–53.

    CAS  PubMed  Google Scholar 

  46. Kiriyama T, Kataoka H, Taoka T, et al. Characteristic neuroimaging in patients with tumefactive demyelinating lesions exceeding 30 mm. J Neuroimaging. 2011;21(2):e69–77.

    PubMed  Google Scholar 

  47. Abou Zeid N, Pirko I, Erickson B, Weigand SD, Thomsen KM, Scheithauer B, Parisi JE, Giannini C, Linbo L, Lucchinetti CF. Diffusion-weighted imaging characteristics of biopsy-proven demyelinating brain lesions. Neurology. 2012;78(21):1655–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kim DS, Na DG, Kim KH, et al. Distinguishing tumefactive demyelinating lesions from glioma or central nervous system lymphoma: added value of unenhanced CT compared with conventional contrast-enhanced MR imaging. Radiology. 2009;251(2):467–75.

    PubMed  Google Scholar 

  49. Cianfoni A, Niku S, Imbesi SG. Metabolite findings in tumefactive demyelinating lesions utilizing short echo time proton magnetic resonance spectroscopy. AJNR Am J Neuroradiol. 2007;28(2):272–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Given CA 2nd, Stevens BS, Lee C. The MRI appearance of tumefactive demyelinating lesions. AJR Am J Roentgenol. 2004;182(1):195–9.

    PubMed  Google Scholar 

  51. Lu SS, Kim SJ, Kim HS, Choi CG, Lim YM, Kim EJ, Kim DY, Cho SH. Utility of proton MR spectroscopy for differentiating typical and atypical primary central nervous system lymphomas from tumefactive demyelinating lesions. AJNR Am J Neuroradiol. 2014;35(2):270–7.

    PubMed  PubMed Central  Google Scholar 

  52. Takenaka S, Shinoda J, Asano Y, Aki T, Miwa K, Ito T, Yokoyama K, Iwama T. Metabolic assessment of monofocal acute inflammatory demyelination using MR spectroscopy and (11)C-methionine-, (11)C-choline-, and (18)F-fluorodeoxyglucose-PET. Brain Tumor Pathol. 2011;28(3):229–38.

    CAS  PubMed  Google Scholar 

  53. Bolat S, Berding G, Dengler R, Stangel M, Trebst C. Fluorodeoxyglucose positron emission tomography (FDG-PET) is useful in the diagnosis of neurosarcoidosis. J Neurol Sci. 2009;287(1–2):257–9.

    CAS  PubMed  Google Scholar 

  54. Balloy G, Pelletier J, Suchet L, Lebrun C, Cohen M, Vermersch P, Zephir H, Duhin E, Gout O, Deschamps R, Le Page E, Edan G, Labauge P, Carra-Dallieres C, Rumbach L, Berger E, Lejeune P, Devos P, N’Kendjuo JB, Coustans M, Auffray-Calvier E, Daumas-Duport B, Michel L, Lefrere F, Laplaud DA, Brosset C, Derkinderen P, de Seze J, Wiertlewski S, Société Francophone de la Sclérose en Plaques. Inaugural tumor-like multiple sclerosis: clinical presentation and medium-term outcome in 87 patients. J Neurol. 2018;265(10):2251–9.

    CAS  PubMed  Google Scholar 

  55. Herrlinger U, Schabet M, Bitzer M, Petersen D, Krauseneck P. Primary central nervous system lymphoma: from clinical presentation to diagnosis. J Neurooncol. 1999;43(3):219–26.

    CAS  PubMed  Google Scholar 

  56. Ballester LY, Boghani Z, Baskin DS, Britz GW, Olsen R, Fuller GN, Powell SZ, Cykowski MD. Creutzfeld astrocytes may be seen in IDH-wildtype glioblastoma and retain expression of DNA repair and chromatin binding proteins. Brain Pathol. 2018;28(6):1012–9. https://doi.org/10.1111/bpa.12604. Epub 2018 Apr 25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nagappa M, Taly AB, Sinha S, Bharath RD, Mahadevan A, Bindu PS, Saini JS, Prasad C, Shankar SK. Tumefactive demyelination: clinical, imaging and follow-up observations in thirty-nine patients. Acta Neurol Scand. 2013;128(1):39–47.

    CAS  PubMed  Google Scholar 

  58. Wattamwar PR, Baheti NN, Kesavadas C, Nair M, Radhakrishnan A. Evolution and long term outcome in patients presenting with large demyelinating lesions as their first clinical event. J Neurol Sci. 2010;297(1–2):29–35.

    PubMed  Google Scholar 

  59. Siri A, Carra-Dalliere C, Ayrignac X, Pelletier J, Audoin B, Pittion-Vouyovitch S, Debouverie M, Lionnet C, Viala F, Sablot D, Brassat D, Ouallet JC, Ruet A, Brochet B, Taillandier L, Bauchet L, Derache N, Defer G, Cabre P, de Seze J, Lebrun Frenay C, Cohen M, Labauge P. Isolated tumefactive demyelinating lesions: diagnosis and long-term evolution of 16 patients in a multicentric study. J Neurol. 2015;262(7):1637–45.

    CAS  PubMed  Google Scholar 

  60. Munarriz PM, Castaño-Leon AM, Martinez-Perez R, Hernandez-Lain A, Ramos A, Lagares A. Tumefactive multiple sclerosis requiring emergency craniotomy: case report and literature review. Neurocirugia (Astur). 2013;24(5):220–4.

    Google Scholar 

  61. Nakamura M, Itani K, Miyake K, Kunieda T, Kaneko S, Kusaka H. Natalizumab is effective for the treatment of relapsing-remitting tumefactive multiple sclerosis. Intern Med. 2017;56(2):211–4.

    PubMed  PubMed Central  Google Scholar 

  62. Nealon N. Severe multiple sclerosis relapse on Fingolimod. Risk management for disease-modifying treatments 1. 2011. 5th Joint triennial congress of the European and Americas Committees for Treatment and Research in Multiple Sclerosis. 19.10.2011 – 22.10.2011.

    Google Scholar 

  63. Visser F, Wattjes MP, Pouwels PJ, et al. Tumefactive multiple sclerosis lesions under fingolimod treatment. Neurology. 2012;79(19):2000–3.

    PubMed  Google Scholar 

  64. Pilz G, Harrer A, Wipfler P, Oppermann K, Sellner J, Fazekas F, Trinka E, Kraus J. Tumefactive MS lesions under fingolimod: a case report and literature review. Neurology. 2013;81(19):1654–8. https://doi.org/10.1212/01.wnl.0000435293.34351.11. Epub 2013 Oct 4. Review. Erratum in: Neurology. 2014;82(17):1569

    Article  PubMed  Google Scholar 

  65. Sánchez P, Meca-Lallana V, Vivancos J. Tumefactive multiple sclerosis lesions associated with fingolimod treatment: report of 5 cases. Mult Scler Relat Disord. 2018;25:95–8.

    PubMed  Google Scholar 

  66. Giordana MT, Cavalla P, Uccelli A, Laroni A, Bandini F, Vercellino M, Mancardi G. Overexpression of sphingosine-1-phosphate receptors on reactive astrocytes drives neuropathology of multiple sclerosis rebound after fingolimod discontinuation. Mult Scler. 2018;24(8):1133–7.

    CAS  PubMed  Google Scholar 

  67. Barton J, Hardy TA, Riminton S, Reddel SW, Barnett Y, Coles A, Barnett MH. Tumefactive demyelination following treatment for relapsing multiple sclerosis with alemtuzumab. Neurology. 2017;88(10):1004–6.

    PubMed  Google Scholar 

  68. Hardy TA, Miller DH. Baló’s concentric sclerosis. Lancet Neurol. 2014;13(7):740–6.

    PubMed  Google Scholar 

  69. Tabira T. Chapter 105: Concentric sclerosis (Balo’s disease). In: Lisak RP, Truong DD, Carroll WM, Bhidayasiri R, editors. International neurology: a clinical approach: Blackwell Publishing; 2009. isbn:978-1-4051-5738-4.

    Google Scholar 

  70. Agarwal M, Ulmer JL, Klein AP, Mark LP. Why is this auntminnie a diagnostic conundrum?: a knowledge-based approach to Balo’s concentric sclerosis from reports of 3 cases and pooled data from 68 other patients in the literature. Curr Probl Diagn Radiol. 2018 Jan 6. pii: S0363-0188(17)30191-3. doi: 10.1067/j.cpradiol.2017.12.008. [Epub ahead of print].

    Google Scholar 

  71. Kira J. Astrocytopathy in Balo’s disease. Mult Scler. 2011;17(7):771–9.10.

    PubMed  Google Scholar 

  72. Takai Y, Misu T, Nishiyama S, Ono H, Kuroda H, Nakashima I, Saito R, Kanamori M, Sonoda Y, Kumabe T, Mugikura S, Watanabe M, Aoki M, Fujihara K. Hypoxia-like tissue injury and glial response contribute to Balo concentric lesion development. Neurology. 2016;87(19):2000–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Chaodong W, Zhang KN, Wu XM, et al. Balό’s disease showing benign clinical course and co-existence with multiple sclerosis-like lesions in Chinese. Mult Scler. 2008;14:418–24.

    Google Scholar 

  74. Masuda H, Mori M, Katayama K, Kikkawa Y, Kuwabara S. Anti-aquaporin-4 antibody-seronegative NMO spectrum disorder with Baló’s concentric lesions. Intern Med. 2013;52(13):1517–21.

    PubMed  Google Scholar 

  75. Bhoi S, Naik S, Kalita J, Misra UK. Multifocal Balo’s concentric sclerosis in children: report of a case and review of literature. J Neurosci Rural Pract. 2017;8(Suppl 1):S136–8.

    PubMed  PubMed Central  Google Scholar 

  76. Jarius S, Würthwein C, Behrens JR, Wanner J, Haas J, Paul F, Wildemann B. Balό’s concentric sclerosis is immunologically distinct from multiple sclerosis: results from retrospective analysis of almost 150 lumbar punctures. J Neuroinflammation. 2018;15(1):22.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Stadelmann C, Ludwin S, Tabira T, et al. Tissue preconditioning may explain concentric lesions in Balo type of multiple sclerosis. Brain. 2005;128:979–87.

    PubMed  Google Scholar 

  78. Khonsari RH, Calvez V. The origins of concentric demyelination: self organization in the human brain. PLoS One. 2007;2(1):e150.

    PubMed  PubMed Central  Google Scholar 

  79. Masaki K, Suzuki SO, Matsushita T, Matsuoka T, Imamura S, Yamasaki R, Suzuki M, Suenaga T, Iwaki T, Kira J. Connexin 43 astrocytopathy linked to rapidly progressive multiple sclerosis and neuromyelitis optica. PLoS One. 2013;8(8):e72919.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Masaki K, Suzuki SO, Matsushita T, Yonekawa T, Matsuoka T, Isobe N, Motomura K, Wu XM, Tabira T, Iwaki T, Kira J. Extensive loss of connexins in Balό’s disease: evidence for an antibody-independent astrocytopathy via impaired astrocyte-oligodendrocyte/myelin interaction. Acta Neuropathol. 2012;123(6):887–900.

    PubMed  Google Scholar 

  81. Kavanagh EC, Heran MK, Fenton DM, Lapointe JS, Nugent RA, Graeb DA. Diffusion-weighted imaging findings in Balo concentric sclerosis. Br J Radiol. 2006;79(943):e28–31.

    CAS  PubMed  Google Scholar 

  82. Lindquist S, Bodammer N, Kaufmann J, König F, Heinze HJ, Brück W, Sailer M. Histopathology and serial, multimodal magnetic resonance imaging in a multiple sclerosis variant. Mult Scler. 2007;13(4):471–82.

    CAS  PubMed  Google Scholar 

  83. Kreft KL, Mellema SJ, Hintzen RQ. Spinal cord involvement in Balo’s concentric sclerosis. J Neurol Sci. 2009;279:114–7.

    PubMed  Google Scholar 

  84. Chen F, Liu T, Li J, Xing Z, Huang S, Wen G, Lu G. Eccentric development of Balo’s concentric sclerosis: detected by magnetic resonance diffusion-weighted imaging and magnetic resonance spectroscopy. Int J Neurosci. 2015;125(6):433–40.

    CAS  PubMed  Google Scholar 

  85. Ripellino P, Khonsari R, Stecco A, Filippi M, Perchinunno M, Cantello R. Clues on Balo’s concentric sclerosis evolution from serial analysis of ADC values. Int J Neurosci. 2016;126(1):88–95.

    PubMed  Google Scholar 

  86. Hardy TA, Beadnall HN, Sutton IJ, Mohamed A, Jonker BP, Buckland ME, Barnett MH. Baló’s concentric sclerosis and tumefactive demyelination: a shared immunopathogenesis? J Neurol Sci. 2015;348(1–2):279–81.

    PubMed  Google Scholar 

  87. Hardy TA, Lucchinetti CF. Exploring the overlap between multiple sclerosis, tumefactive demyelination and Baló’s concentric sclerosis. Mult Scler. 2016;22(8):986–92.

    PubMed  Google Scholar 

  88. Hardy TA, Corboy JR, Weinshenker BG. Baló concentric sclerosis evolving from apparent tumefactive demyelination. Neurology. 2017;88(22):2150–2.

    PubMed  Google Scholar 

  89. Courville CB. Concentric sclerosis. In: Vinken P, Bruyn GW, editors. Handbook of clinical neurology. Amsterdam: North Holland; 1970. p. 437–51.

    Google Scholar 

  90. Stork L, Ellenberger D, Beißbarth T, Friede T, Lucchinetti CF, Brück W, Metz I. Differences in the responses to apheresis therapy of patients with 3 histopathologically classified immunopathological patterns of multiple sclerosis. JAMA Neurol. 2018;75(4):428–35.

    PubMed  PubMed Central  Google Scholar 

  91. Marburg O. Die sogenannte “akute Multiple Sklerose”. J Psychiatr Neurol. 1906;27:211–312.

    Google Scholar 

  92. Turatti M, Gajofatto A, Rossi F, Vedovello M, Benedetti MD. Long survival and clinical stability in Marburg’s variant multiple sclerosis. Neurol Sci. 2010;31(6):807–11.

    PubMed  Google Scholar 

  93. Mendez MF, Pogacar S. Malignant monophasic multiple sclerosis or “Marburg’s disease”. Neurology. 1988;38(7):1153–5.

    CAS  PubMed  Google Scholar 

  94. Zettl UK, Stüve O, Patejdl R. Immune-mediated CNS diseases: a review on nosological classification and clinical features. Autoimmun Rev. 2012;11(3):167–73.

    PubMed  Google Scholar 

  95. Suzuki M, Kawasaki H, Masaki K, Suzuki SO, Terada T, Tsuchida T, Tokuyama T, Kono S, Komori T, Baba S, Kira J, Miyajima H. An autopsy case of the Marburg variant of multiple sclerosis (acute multiple sclerosis). Intern Med. 2013;52(16):1825–32.

    PubMed  Google Scholar 

  96. Bitsch A, Wegener C, da Costa C, Bunkowski S, Reimers CD, Prange HW, Brück W. Lesion development in Marburg’s type of acute multiple sclerosis: from inflammation to demyelination. Mult Scler. 1999;5(3):138–46.

    CAS  PubMed  Google Scholar 

  97. Elenein RG, Sharer LR, Cook SD, Pachner AR, Michaels J, Hillen ME. A second case of Marburg’s variant of multiple sclerosis with vasculitis and extensive demyelination. Mult Scler. 2011;17(12):1531–8.

    PubMed  Google Scholar 

  98. Wood DD, Bilbao JM, O’Connors P, Moscarello MA. Acute multiple sclerosis (Marburg type) is associated with developmentally immature myelin basic protein. Ann Neurol. 1996;40(1):18–24.

    CAS  PubMed  Google Scholar 

  99. Beniac DR, Wood DD, Palaniyar N, Ottensmeyer FP, Moscarello MA, Harauz G. Marburg’s variant of multiple sclerosis correlates with a less compact structure of myelin basic protein. Mol Cell Biol Res Commun. 1999;1(1):48–51.

    CAS  PubMed  Google Scholar 

  100. Oreja-Guevara C, Gómez-Pinedo U, García-López J, Sánchez-Sánchez R, Valverde-Moyano R, Rabano-Gutierrez A, Matías-Guiu JA, González-Suárez I, Matías-Guiu J. Inhibition of neurogenesis in a case of Marburg variant multiple sclerosis. Mult Scler Relat Disord. 2017;18:71–6.

    PubMed  Google Scholar 

  101. Jeffery DR, Lefkowitz DS, Crittenden JP. Treatment of Marburg variant multiple sclerosis with mitoxantrone. J Neuroimaging. 2004;14(1):58–62.

    PubMed  Google Scholar 

  102. Nozaki K, Abou-Fayssal N. High dose cyclophosphamide treatment in Marburg variant multiple sclerosis. A case report. J Neurol Sci. 2010;296(1–2):121–3.

    CAS  PubMed  Google Scholar 

  103. Gobbin F, Marangi A, Orlandi R, Richelli S, Turatti M, Calabrese M, Forgione A, Alessandrini F, Benedetti MD, Monaco S, Gajofatto A. A case of acute fulminant multiple sclerosis treated with alemtuzumab. Mult Scler Relat Disord. 2017;17:9–11.

    CAS  PubMed  Google Scholar 

  104. Poser CM, Goutières F, Carpentier MA, Aicardi J. Schilder’s myelinoclastic diffuse sclerosis. Pediatrics. 1986;77(1):107–12. Erratum in: Pediatrics 1986;78(1):138

    CAS  PubMed  Google Scholar 

  105. Rust RS Jr. Diffuse sclerosis. Medscape. Updated April 14, 2016.

    Google Scholar 

  106. Maraş Genç H, Kara B, Uyur Yalçın E, Sakarya Güneş A, Deniz A, Anık Y. Long-term clinical and radiologic follow-up of Schilder’s disease. Mult Scler Relat Disord. 2017;13:47–51.

    PubMed  Google Scholar 

  107. Poser S, Lüer W, Bruhn H, Frahm J, et al. Acute demyelinating disease. Classification and non-invasive diagnosis. Acta Neurol Scand. 1992;86(6):579–85.

    CAS  PubMed  Google Scholar 

  108. Miyamoto N, Kagohashi M, Nishioka K, Fujishima K, Kitada T, Tomita Y, Mori K, Maeda M, Wada R, Matsumoto M, Mori H, Mizuno Y, Okuma Y. An autopsy case of Schilder’s variant of multiple sclerosis (Schilder’s disease). Eur Neurol. 2006;55(2):103–7. Epub 2006 Apr 21

    PubMed  Google Scholar 

  109. Bacigaluppi S, Polonara G, Zavanone ML, Campanella R, Branca V, Gaini SM, Tredici G, Costa A. Schilder’s disease: non-invasive diagnosis? A case report and review. Neurol Sci. 2009;30(5):421–30. https://doi.org/10.1007/s10072-009-0113-z. Epub 2009 Jul 17

    Article  PubMed  Google Scholar 

  110. Pretorius ML, Loock DB, Ravenscroft A, Schoeman JF. Demyelinating disease of Schilder type in three young South African children: dramatic response to corticosteroids. J Child Neurol. 1998;13(5):197–201.

    CAS  PubMed  Google Scholar 

  111. Kraus D, Konen O, Straussberg R. Schilder’s disease: non-invasive diagnosis and successful treatment with human immunoglobulins. Eur J Paediatr Neurol. 2012;16(2):206–8.

    PubMed  Google Scholar 

Download references

Acknowledgements, Competing Interests, and Funding

TAH: Has received honoraria or travel sponsorship from Bayer-Schering, Novartis, Biogen Idec, Merck-Serono, Teva, Roche, Alexion and Genzyme.

This work received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Todd A. Hardy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hardy, T.A. (2019). Atypical Inflammatory Demyelinating Syndromes of the Central Nervous System. In: Mitoma, H., Manto, M. (eds) Neuroimmune Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-19515-1_17

Download citation

Publish with us

Policies and ethics