Skip to main content

Multiple Sclerosis

  • Chapter
  • First Online:
Neuroimmune Diseases

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Multiple sclerosis (MS) is an inflammatory demyelinating disease that targets myelin in the central nervous system (CNS), with relative sparing of axons. MS affects more than 2.5 million people worldwide and more commonly affects females. MS is prevalent in people of Caucasian descent living in the temperate regions of Europe, North America, and Australia, while it is relatively rare in Asians and Africans, indicating clear racial and geographical differences. Most MS patients initially have a relapsing-remitting phase with a mean age of onset around 30 years of age. This is termed relapsing-remitting MS (RRMS). In its natural course, after 10–20 years, about half of RRMS patients develop a secondary progressive phase with or without superimposed relapses, which is termed secondary progressive MS (SPMS). Approximately 10–20% of MS patients exhibit a relentlessly progressive course from the onset, termed primary progressive MS (PPMS).

MS is assumed to be an autoimmune disease but this is not yet proven. In addition to major effects of human leukocyte antigen (HLA) class II genes (such as HLA-DRB1⃰15:01), genome-wide association studies have revealed many susceptibility genes for MS with modest effect size. The functions of these genes are mostly immune-related, supporting the autoimmune hypothesis. T helper (Th)1/Th17 cell involvement in acute relapse and acute MS lesion formation is supported by perivascular lymphocyte cuffing consisting mainly of CD4+ T cells, increased numbers of T cells showing inter- and intra-molecular epitope spreading against myelin proteins, increased cerebrospinal fluid (CSF) levels of interferon (IFN)γ, interleukin (IL)17 and downstream proinflammatory cytokines, exacerbation of disease following IFNγ administration, and increased percentages of Th1 cells secreting IFNγ and of Th17 cells secreting IL-17 at relapse. Clonal expansion of CD8+ T cells and abundant infiltration of CD8+ T cells suggest a contribution of cytotoxic T cells, presumably by acute axonal transection. Although B cell infiltration in the CNS parenchyma is not prominent, ectopic lymphoid follicles that appear to have a close correlation with subpial demyelination are often detected in the meninges. Their existence indicates an involvement of B cells in MS. The efficacy of anti-CD20 monoclonal antibody therapy also supports a B cell contribution to MS, probably through B−T cell interaction and proinflammatory cytokine production. However, no specific autoantibodies for MS have been discovered. Although our understanding of MS pathogenesis has increased remarkably in recent years, its etiology remains to be established. Recently developed disease-modifying drugs (DMDs) can efficiently suppress MS relapse but disability still progresses even with these drugs. Only one DMD is modestly effective for PPMS. The mechanism of the progressive phase remains unknown, and its elucidation and control by novel drugs are major challenges for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sadovnick AD, Armstrong H, Rice GP, et al. A population-based study of multiple sclerosis in twins: update. Ann Neurol. 1993;33:281–5.

    CAS  PubMed  Google Scholar 

  2. Browne P, Chandraratna D, Angood C, Tremlett H, Baker C, Taylor BV, Thompson AJ. Global perspectives. Neurology. 2014;83:1022–4. (MS International Federation. Atlas of MS 2013. http://www.atlasofms.org)

    PubMed  PubMed Central  Google Scholar 

  3. Kira J. Multiple sclerosis in the Japanese population. Lancet Neurol. 2003;2:117–27.

    PubMed  Google Scholar 

  4. Ebers GC. Environmental factors and multiple sclerosis. Lancet Neurol. 2008;7:268–77.

    PubMed  Google Scholar 

  5. Kurtzke JF, Kurland LT, Goldberg ID. Mortality and migration in multiple sclerosis. Neurology. 1971;21:1186–97.

    CAS  PubMed  Google Scholar 

  6. Detels R, Visscher BR, Haile RW, Malmgren RM, Dudley JP, Coulson AH. Multiple sclerosis and age at migration. Am J Epidemiol. 1978;108:386–93.

    CAS  PubMed  Google Scholar 

  7. Elian M, Nightingale S, Dean G. Multiple sclerosis among United Kingdom-born children of immigrants from the Indian subcontinent, Africa and the West Indies. J Neurol Neurosurg Psychiatry. 1990;53:906–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dean G, Elian M. Age at immigration to England of Asian and Caribbean immigrants and the risk of developing multiple sclerosis. J Neurol Neurosurg Psychiatry. 1997;63:565–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hammond SR, English DR, McLeod JG. The age-range of risk of developing multiple sclerosis: evidence from a migrant population in Australia. Brain. 2000;123:968–74.

    PubMed  Google Scholar 

  10. Sánchez JL, Palacio LG, Uribe CS, Londoño AC, Villa A, Jiménez M, et al. Clinical features of multiple sclerosis in a genetically homogeneous tropical population. Mult Scler. 2001;7:227–9.

    PubMed  Google Scholar 

  11. Noonan CW, Kathman SJ, White MC. Prevalence estimates for MS in the United States and evidence of an increasing trend for women. Neurology. 2002;58:136–8.

    PubMed  Google Scholar 

  12. Barnett MH, Williams DB, Day S, Macaskill P, McLeod JG. Progressive increase in incidence and prevalence of multiple sclerosis in Newcastle, Australia: a 35-year study. J Neurol Sci. 2003;213:1–6.

    CAS  PubMed  Google Scholar 

  13. Wallin MT, Page WF, Kurtzke JF. Multiple sclerosis in US veterans of the Vietnam era and later military service: race, sex, and geography. Ann Neurol. 2004;55:65–71.

    PubMed  Google Scholar 

  14. Osoegawa M, Kira J, Fukazawa T, Fujihara K, Kikuchi S, Matsui M, et al. Temporal changes and geographical differences in multiple sclerosis phenotypes in Japanese: nationwide survey results over 30 years. Mult Scler. 2009;15:159–73.

    CAS  PubMed  Google Scholar 

  15. Kennedy J, O’Connor P, Sadovnick AD, Perara M, Yee I, Banwell B. Age at onset of multiple sclerosis may be influenced by place of residence during childhood rather than ancestry. Neuroepidemiology. 2006;26:162–7.

    CAS  PubMed  Google Scholar 

  16. Orton S-M, Herrera B, Yee IM, Valdar W, Ramagopalan SV, Sadovnic AD, et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol. 2006;5:932–6.

    PubMed  Google Scholar 

  17. Kira J. Genetic and environmental backgrounds responsible for the change in the phenotype of MS in Japanese subjects. Mult Scler Relat Disord. 2012;1:188–95.

    PubMed  Google Scholar 

  18. Tremlett HY, Zhao Y, Devonshire V. Natural history of secondary-progressive multiple sclerosis. Mult Scler. 2008;14:314–24.

    PubMed  Google Scholar 

  19. Scalfari A, Neuhaus A, Daumer M, Muraro PA, PA EGC. Onset of secondary progressive phase and long-term evolution of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2013;85:67–75.

    PubMed  Google Scholar 

  20. Mistry N, Dixon J, Tallantyre E, Tench C, Abdel-Fahim R, Jaspan T, et al. Central veins in brain lesions visualized with high-field magnetic resonance imaging: a pathologically specific diagnostic biomarker for inflammatory demyelination in the brain. JAMA Neurol. 2013;70:623–8.

    PubMed  Google Scholar 

  21. Thompson A, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17:162–73.

    PubMed  Google Scholar 

  22. Okuda DT, Mowry EM, Beheshtian A, et al. Incidental MRI anomalies suggestive of multiple sclerosis: the radiologically isolated syndrome. Neurology. 2009;72:800–5.

    CAS  PubMed  Google Scholar 

  23. Bo L, Vedeler CA, Nyland HI, et al. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol. 2003;62:723–32.

    PubMed  Google Scholar 

  24. Calabrese M, Battaglini M, Giorgio A, et al. Imaging distribution and frequency of cortical lesions in patients with multiple sclerosis. Neurology. 2010;75:1234–40.

    CAS  PubMed  Google Scholar 

  25. Shinoda K, Matsushita T, Nakamura Y, et al. HLA-DRBI04:05 allele is associated with intracortical lesions on 3-dimensional double inversion recovery images in Japanese patients with multiple sclerosis. Mult Scler. 2018;24:710–20.

    CAS  PubMed  Google Scholar 

  26. De Stefano N, Stromillo ML, Giorgio A, et al. Establishing pathological cut-offs of brain atrophy rates in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2016;87:93–9.

    PubMed  Google Scholar 

  27. Lassmann H, Raine CS, Antel J, Prineas JW. Immunopathology of multiple sclerosis: report on an international meeting held at the institute of neurology of the University of Vienna. J Neuroimmunol. 1998;86:213–7.

    CAS  PubMed  Google Scholar 

  28. Kuhlmann T, Ludwin S, Prat A, Antel J, Bruck W, Lassmann H. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathol. 2017;133:13–24.

    CAS  PubMed  Google Scholar 

  29. Babbe H, Roers A, Waisman A, et al. Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med. 2000;192:393–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Patrikios P, Stadelmann C, Kutzelnigg A, et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain. 2006;129:3165–72.

    PubMed  Google Scholar 

  31. Patani R, Balaratnam M, Vora A, Reynolds R. Remyelination can be extensive in multiple sclerosis despite a long disease course. Neuropathol Appl Neurobiol. 2007;33:277–87.

    CAS  PubMed  Google Scholar 

  32. Prineas JW, Barnard RO, Revesz T, Kwon EE, Sharer L, Cho ES. Multiple sclerosis. Pathology of recurrent lesions. Brain. 1993;116:681–93.

    PubMed  Google Scholar 

  33. Reynolds R, Roncaroli F, Nicholas R, Radotra B, Gveric D, Howell O. The neuropathological basis of clinical progression in multiple sclerosis. Acta Neuropathol. 2011;122:155–70.

    PubMed  Google Scholar 

  34. Benarroch EE. Oligodendrocytes. Susceptibility to injury and involvement in neurologic disease. Neurology. 2009;72:1779–85.

    PubMed  Google Scholar 

  35. Chang A, Nishiyama A, Peterson J, Prineas J, Trapp BD. NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions. J Neurosci. 2000;20:6404–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Chang A, Tourtellotte WW, Rudick R, Trapp BD. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med. 2002;346:165–73.

    PubMed  Google Scholar 

  37. Satoh J, Tabunoki H, Yamamura T, Arima K, Konno H. TROY and LINGO-1 expression in astrocytes and macrophages/microglia in multiple sclerosis lesions. Neuropathol Appl Neurobiol. 2007;33:99–107.

    CAS  PubMed  Google Scholar 

  38. Mi S, Miller RH, Lee X, et al. LINGO-1 negatively regulates myelination by oligodendrocytes. Nat Neurosci. 2005;8:745–51.

    CAS  PubMed  Google Scholar 

  39. Charles P, Reynolds R, Seilhean D, et al. Re-expression of PSA-NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis? Brain. 2002;125:1972–9.

    PubMed  Google Scholar 

  40. Kotter MR, Li WW, Zhao C, Franklin RJ. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci. 2006;26:328–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Stoffels JM, de Jonge JC, Stancic M, et al. Fibronectin aggregation in multiple sclerosis lesions impairs remyelination. Brain. 2013;136:116–31.

    PubMed  Google Scholar 

  42. Ferguson B, Matyszak MK, Esiri MM, Perry VH. Axonal damage in acute multiple sclerosis lesions. Brain. 1997;120:393–9.

    PubMed  Google Scholar 

  43. Kuhlmann T, Lingfeld G, Bitsch A, Schuchardt J, Brück W. Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain. 2002;125:2202–12.

    PubMed  Google Scholar 

  44. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998;338:278–85.

    CAS  PubMed  Google Scholar 

  45. Dutta R, McDonough J, Yin X, et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol. 2006;59:478–89.

    CAS  PubMed  Google Scholar 

  46. Fisniku LK, Chard DT, Jackson JS, et al. Gray matter atrophy is related to long-term disability in multiple sclerosis. Ann Neurol. 2008;64:247–54.

    PubMed  Google Scholar 

  47. Fisher E, Lee JC, Nakamura K, Rudick RA. Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol. 2008;64:255–65.

    PubMed  Google Scholar 

  48. Kutzelnigg A, Lucchinetti CF, Stadelmann C, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128:2705–12.

    PubMed  Google Scholar 

  49. Vercellino M, Plano F, Votta B, Mutani R, Giordana MT, Cavalla P. Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol. 2005;64:1101–7.

    PubMed  Google Scholar 

  50. Bonati U, Fisniku LK, Altmann DR, et al. Cervical cord and brain grey matter atrophy independently associate with long-term MS disability. J Neurol Neurosurg Psychiatry. 2011;82:471–2.

    CAS  PubMed  Google Scholar 

  51. Geurts JJ, Pouwels PJ, Uitdehaag BM, Polman CH, Barkhof F, Castelijns JA. Intracortical lesions in multiple sclerosis: improved detection with 3D double inversion-recovery MR imaging. Radiology. 2005;236:254–60.

    PubMed  Google Scholar 

  52. Calabrese M, Filippi M, Gallo P. Cortical lesions in multiple sclerosis. Nat Rev Neurol. 2010;6:438–44.

    PubMed  Google Scholar 

  53. Bö L, Vedeler CA, Nyland H, Trapp BD, Mörk SJ. Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult Scler. 2003;9:323–31.

    PubMed  Google Scholar 

  54. Peterson JW, Bö L, Mörk S, Chang A, Trapp BD. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol. 2001;50:389–400.

    CAS  PubMed  Google Scholar 

  55. Magliozzi R, Howell OW, Reeves C, et al. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Ann Neurol. 2010;68:477–93.

    CAS  PubMed  Google Scholar 

  56. Howell OW, Reeves CA, Nicholas R, et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain. 2011;134:2755–71.

    PubMed  Google Scholar 

  57. Magliozzi R, Howell O, Vora A, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2007;130:1089–104.

    PubMed  Google Scholar 

  58. Magliozzi R, Howell OW, Nicholas R, et al. Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Ann Neurol. 2018;83:739–55.

    CAS  PubMed  Google Scholar 

  59. Campbell GR, Ziabreva I, Reeve AK, et al. Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol. 2011;69:481–92.

    CAS  PubMed  Google Scholar 

  60. Mahad DJ, Ransohoff RM. The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Semin Immunol. 2003;15:23–32.

    CAS  PubMed  Google Scholar 

  61. Saha RN, Pahan K. Regulation of inducible nitric oxide synthase gene in glial cells. Antioxid Redox Signal. 2006;8:929–47.

    CAS  PubMed  Google Scholar 

  62. Antony JM, van Marle G, Opii W, et al. Human endogenous retrovirus glycoprotein-mediated induction of redox reactants causes oligodendrocyte death and demyelination. Nat Neurosci. 2004;7:1088–95.

    CAS  PubMed  Google Scholar 

  63. Moore CS, Abdullah SL, Brown A, Arulpragasam A, Crocker SJ. How factors secreted from astrocytes impact myelin repair. J Neurosci Res. 2011;89:13–21.

    CAS  PubMed  Google Scholar 

  64. Gallo V, Armstrong RC. Myelin repair strategies: a cellular view. Curr Opin Neurol. 2008;21:278–83.

    PubMed  PubMed Central  Google Scholar 

  65. Allaman I, Bélanger M, Magistretti PJ. Astrocyte-neuron metabolic relationships: for better and for worse. Trends Neurosci. 2011;34:76–87.

    CAS  PubMed  Google Scholar 

  66. Voskuhl RR, Peterson RS, Song B, et al. Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci. 2009;29:11511–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. International Multiple Sclerosis Genetics Consortium, Patsopoulos N, Baranzini SE, Santaniello A, et al. The Multiple Sclerosis Genomic Map: role of peripheral immune cells and resident microglia in susceptibility. BioRxiv. 2017;10.1101/143933.

    Google Scholar 

  68. Baranzini SE, Oksenberg JR. The genetics of multiple sclerosis: from 0 to 200 in 50 years. Trends Genet. 2017;33:960–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Nischwitz S, Müller-Myhsok B, Weber F. Risk conferring genes in multiple sclerosis. FEBS Lett. 2011;585:3789–97.

    CAS  PubMed  Google Scholar 

  70. Marrosu MG, Murru MR, Costa G, et al. DRB1-DQA1-DQB1 loci and multiple sclerosis predisposition in the Sardinian population. Hum Mol Genet. 1998;7:1235–7.

    CAS  PubMed  Google Scholar 

  71. Marrosu MG, Sardu C, Cocco E, et al. Bias in parental transmission of the HLA-DR3 allele in Sardinian multiple sclerosis. Neurology. 2004;63:1084–6.

    CAS  PubMed  Google Scholar 

  72. International Multiple Sclerosis Genetics C, International IBDGC, International IBDGCI. Class II HLA interactions modulate genetic risk for multiple sclerosis. Nat Genet. 2015;47:1107–13.

    Google Scholar 

  73. Okuda DT, Srinivasan R, Oksenberg JR, et al. Genotype-Phenotype correlations in multiple sclerosis: HLA genes influence disease severity inferred by 1HMR spectroscopy and MRI measures. Brain. 2009;132:250–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Isobe N, Keshavan A, Gourraud PA, et al. Association of HLA genetic risk burden with disease phenotypes in multiple sclerosis. JAMA Neurol. 2016;73:795–802.

    PubMed  PubMed Central  Google Scholar 

  75. Yoshimura S, Isobe N, Yonekawa T, et al. South Japan Multiple Sclerosis Genetics Consortium. Genetic and infectious profiles of Japanese multiple sclerosis patients. PLoS One. 2012;7:e48592.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Marrosu MG, Cocco E, Lai M, Spinicci G, Pischedda MP, Contu P. Patients with multiple sclerosis and risk of type 1 diabetes mellitus in Sardinia, Italy: a cohort study. Lancet. 2002;359:1461–5.

    PubMed  Google Scholar 

  77. Cocco E, Sardu C, Lai M, Spinicci G, Contu P, Marrosu MG. Anticipation of age at onset in multiple sclerosis: a Sardinian cohort study. Neurology. 2004;62:1794–8.

    CAS  PubMed  Google Scholar 

  78. Matsushita T, Matsuoka T, Isobe N, et al. Association of the HLA-DPB1∗0501 allele with anti-aquaporin-4 antibody positivity in Japanese patients with idiopathic central nervous system demyelinating disorders. Tissue Antigens. 2008;73:171–6.

    Google Scholar 

  79. Qiu W, James I, Carroll WM, Mastaglia FL, Kermode AG. HLA-DR allele polymorphism and multiple sclerosis in Chinese populations: a meta-analysis. Mult Scler. 2010;17:382–8.

    PubMed  Google Scholar 

  80. Fujisao S, Matsushita S, Nishi T, Nishimura Y. Identification of HLA-DR9 (DRB1∗0901)-binding peptide motifs using a phage fUSE5 random peptide library. Hum Immunol. 1996;45:131–6.

    CAS  PubMed  Google Scholar 

  81. Pandit L, Ban M, Sawcer S, et al. Evaluation of the established non-MHC multiple sclerosis loci in an Indian population. Mult Scler. 2011;17:139–43.

    CAS  PubMed  Google Scholar 

  82. Fang L, Isobe N, Yoshimura S, et al. Interleukin-7 receptor alpha gene polymorphism influences multiple sclerosis risk in Asians. Neurology. 2011;76:2125–7.

    CAS  PubMed  Google Scholar 

  83. Handel AE, Giovannoni G, Ebers GC, Ramagopalan SV. Environmental factors and their timing in adult-onset multiple sclerosis. Nat Rev Neurol. 2010;6:156–66.

    PubMed  Google Scholar 

  84. Willer CJ, Dyment DA, Risch NJ, Sadovnick AD, Ebers GC, Canadian Collaborative Study Group. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc National Acad Sci USA. 2003;100:12877–82.

    CAS  Google Scholar 

  85. Dobson R, Giovannoni G, Ramagopalan S. The month of birth effect in multiple sclerosis: systematic review, meta-analysis and effect of latitude. J Neurol Neurosurg Psychiatry. 2013;84:427–32.

    PubMed  Google Scholar 

  86. Panitch HS. Influence of infection on exacerbations of multiple sclerosis. Ann Neurol. 1994;36 Suppl:S25–8.

    CAS  PubMed  Google Scholar 

  87. Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part II: noninfectious factors. Ann Neurol. 2007;61:504–13.

    CAS  PubMed  Google Scholar 

  88. Ramagopalan S, Dobson R, Meier U, Giovannoni G. Multiple sclerosis: risk factors, prodromes, and potential causal pathways. Lancet Neurol. 2010;9:727–39.

    PubMed  Google Scholar 

  89. Niino M, Sato S, Fukazawa T, Masaki K, Miyazaki Y, Matsuse D, et al. Decreased serum vitamin D levels in Japanese patients with multiple sclerosis. J Neuroimmunol. 2015;279:40–5.

    CAS  PubMed  Google Scholar 

  90. O’Gotmsn C, Lucas R, Taylor B. Environmental risk factors for multiple sclerosis: a review with a focus on molecular mechanisms. Int J Mol Sci. 2012;13:11718–52.

    Google Scholar 

  91. Hedstrom AK, Baarnhielm M, Olsson T, Alfredsson L. Tobacco smoking, but not Swedish snuff use, increases the risk of multiple sclerosis. Neurology. 2009;73:696–701.

    PubMed  Google Scholar 

  92. Yazdanbakhsh M, Kremsner PG, van Ree R. Allergy, parasites, and the hygiene hypothesis. Science. 2002;296:490–4.

    CAS  PubMed  Google Scholar 

  93. Leibowitz U, Antonovsky A, Medalie JM, Smith HA, Halpern L, Alter M. Epidemiological study of multiple sclerosis in Israel. Part II. Multiple sclerosis and level of sanitation. J Neurol Neurosurg Psychiatry. 1966;29:60–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ponsonby AL, van der Mei I, Dwyer T, et al. Exposure to infant siblings during early life and risk of multiple sclerosis. JAMA. 2005;293:463–9.

    CAS  PubMed  Google Scholar 

  95. Li W, Minohara M, Su JJ, et al. Helicobacter pylori infection is a potential protective factor against conventional multiple sclerosis in the Japanese population. J Neuroimmunol. 2007;184:227–31.

    CAS  PubMed  Google Scholar 

  96. Pedrini MJ, Seewann A, Bennett KA, et al. Helicobacter pylori infection as a protective factor against multiple sclerosis risk in females. J Neurol Neurosurg Psychiatry. 2015;86:603–7.

    PubMed  Google Scholar 

  97. Graham DY. Helicobacter pylori: its epidemiology and its role in duodenal ulcer disease. J Gastroenterol Hepatol. 1991;6:105–13.

    CAS  PubMed  Google Scholar 

  98. Horiuchi T, Ohkusa T, Watanabe M, Kobayashi D, Miwa H, Eishi Y. Helicobacter pylori DNA in drinking water in Japan. Microbiol Immunol. 2001;45:515–9.

    CAS  PubMed  Google Scholar 

  99. Liu AH, Murphy JR. Hygiene hypothesis: fact or fiction? J Allergy Clin Immunol. 2003;111:471–8.

    PubMed  Google Scholar 

  100. Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the role of infection. Ann Neurol. 2007;61:288–99.

    PubMed  Google Scholar 

  101. Levin LI, Munger KL, O’Reilly EJ, Falk KI, Ascherio A. Primary infection with the Epstein-Barr virus and risk of multiple sclerosis. Ann Neurol. 2010;67:824–30.

    PubMed  PubMed Central  Google Scholar 

  102. Lünemann JD, Tintoré M, Messmer B, et al. Elevated EBNA immune responses predict conversion to multiple sclerosis. Ann Neurol. 2010;67:159–69.

    PubMed  PubMed Central  Google Scholar 

  103. Lucas RM, Hughes AM, Lay MLJ. Epstein-Barr virus and multiple sclerosis. J Neurol Neurosurg Psychiatry. 2011;82:1142–8.

    CAS  PubMed  Google Scholar 

  104. Xiao D, Ye X, Zhang N, et al. A meta-analysis of interaction between Epstein-Barr virus and HLA-DRB1∗15:01 on risk of multiple sclerosis. Sci Rep. 2015;5:18083. https://doi.org/10.1038/srep18083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sundströom P, Nyströom L, Jidell E, Hallmans G. EBNA-1 reactivity and HLA DRB1∗1501 as statistically independent risk factors for multiple sclerosis: a case-control study. Mult Scler. 2008;14:1120–222.

    Google Scholar 

  106. Lünemann JD, Jelcić I, Roberts S, Lutterotti A, Tackenberg B, Martin R, Münz C. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-gamma and IL-2. J Exp Med. 2008;205:1763–173.

    PubMed  PubMed Central  Google Scholar 

  107. Gabibov AG, Belogurov AA Jr, Lomakin YA, et al. Combinatorial antibody library from multiple sclerosis patients reveals antibodies that cross-react with myelin basic protein and EBV antigen. FASEB J. 2011;25:4211–21.

    CAS  PubMed  Google Scholar 

  108. GC E, Sadovnick AD, Dyment DA, Yee IM, Willer CJ, Risch N. Parent-of-origin effect in multiple sclerosis: observations in half-siblings. Lancet. 2004;363:1773–4.

    Google Scholar 

  109. Panitch HS, Hirsch RL, Haley AS, Johnson KP. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet. 1987;1:893–5.

    CAS  PubMed  Google Scholar 

  110. Minohara M, Ochi H, Matsushita S, Irie A, Nishimura Y, Kira J. Differences between T-cell reactivities to major myelin protein-derived peptides in opticospinal and conventional forms of multiple sclerosis and healthy controls. Tissue Antigens. 2001;57:447–56.

    CAS  PubMed  Google Scholar 

  111. Ishizu T, Osoegawa M, Mei FJ, et al. Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain. 2005;128:988–1002.

    PubMed  Google Scholar 

  112. Durelli L, Conti L, Clerico M, et al. T-helper 17 cells expand in multiple sclerosis and are inhibited by interferon-beta. Ann Neurol. 2009;65:499–509.

    CAS  PubMed  Google Scholar 

  113. Ransohoff RM, Engelhardt B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat Rev Immunol. 2012;12:623–35.

    CAS  PubMed  Google Scholar 

  114. Bechmann I, Galea I, Perry VH. What is the blood-brain barrier (not)? Trends Immunol. 2007;28:5–11.

    CAS  PubMed  Google Scholar 

  115. Tran EH, Hoekstra K, van Rooijen N, Dijkstra CD, Owens T. Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol. 1998;161:3767–75.

    CAS  PubMed  Google Scholar 

  116. Barnett MH, Prineas JW. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol. 2004;55:458–68.

    PubMed  Google Scholar 

  117. Meinl E, Krumbholz M, Hohlfeld R. B lineage cells in the inflammatory central nervous system environment: migration, maintenance, local antibody production, and therapeutic modulation. Ann Neurol. 2006;59:880–92.

    CAS  PubMed  Google Scholar 

  118. Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358:676–88.

    CAS  PubMed  Google Scholar 

  119. Sorensen PS, Lisby S, Grove R, et al. Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: a phase 2 study. Neurology. 2014;82:573–81.

    CAS  PubMed  Google Scholar 

  120. Montalban X, Hauser SL, Kappos L, et al. ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376:209–20.

    CAS  PubMed  Google Scholar 

  121. Stadelmann C, Wegner C, Brück W. Inflammation, demyelination, and degeneration - recent insights from MS pathology. Biochim Biophys Acta. 2011;1812:275–82.

    CAS  PubMed  Google Scholar 

  122. Breij EC, Brink BP, Veerhuis R, et al. Homogeneity of active demyelinating lesions in established multiple sclerosis. Ann Neurol. 2008;63:16–25.

    CAS  PubMed  Google Scholar 

  123. Srivastava R, Aslam M, Kalluri SR, et al. Potassium channel KIR4.1 as an immune target in multiple sclerosis. N Engl J Med. 2012;367:115–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Confavreux C, Vukusic S, Moreau T, Adeleine P. Relapses and progression of disability in multiple sclerosis. N Engl J Med. 2000;343:1430–8.

    CAS  PubMed  Google Scholar 

  125. Kremenchutzky M, Rice GP, Baskerville J, Wingerchuk DM, Ebers GC. The natural history of multiple sclerosis: a geographically based study 9: observations on the progressive phase of the disease. Brain. 2006;129:584–94.

    CAS  PubMed  Google Scholar 

  126. Lunde HMB, Assmus J, Myhr KM, Bø L, Grytten N. Survival and cause of death in multiple sclerosis: a 60-year longitudinal population study. J Neurol Neurosurg Psychiatry. 2017;88:621–5.

    PubMed  Google Scholar 

  127. Confavreux C, Vukusic S. Age at disability milestones in multiple sclerosis. Brain. 2006;129:595–605.

    PubMed  Google Scholar 

  128. Skoog B, Runmarker B, Winblad S, Ekholm S, Andersen O. A representative cohort of patients with non-progressive multiple sclerosis at the age of normal life expectancy. Brain. 2012;135:900–11.

    PubMed  Google Scholar 

  129. Thompson A, Barranzini S, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet. 2018;391:1622–36.

    PubMed  Google Scholar 

  130. Confavreux C, Hutchinson M, Hours MM, Cortinovis-Tourniaire P, Moreau T. Rate of pregnancy-related relapse in multiple sclerosis. N Engl J Med. 1998;339:285–91.

    CAS  PubMed  Google Scholar 

  131. Poser S, Poser W. Multiple sclerosis and gestation. Neurology. 1983;33:1422–7.

    CAS  PubMed  Google Scholar 

  132. Ontaneda D, Fox RJ, Chataway J. Clinical trials in progressive multiple sclerosis: lessons learned and future perspectives. Lancet Neurol. 2015;14:208–23.

    PubMed  PubMed Central  Google Scholar 

  133. Rae-Grant A, Day GS, Marrie RA, et al. Practice guideline recommendations summary: disease-modifying therapies for adults with multiple sclerosis: report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology. Neurology. 2018;90:777–88.

    PubMed  Google Scholar 

  134. Gold R, Kappos L, Douglas MD, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med. 2012;367:1098–107.

    CAS  PubMed  Google Scholar 

  135. Fox RJ, Miller DH, Theodore Phillips J, et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med. 2012;367:1087–97.

    CAS  PubMed  Google Scholar 

  136. Berger JR. Classifying PML risk with disease modifying therapies. Mult Scler Relat Disord. 2017;12:59–63.

    PubMed  Google Scholar 

  137. Kappos L, Radue EW, O’Connor P, et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N Engl J Med. 2010;362:387–401.

    CAS  PubMed  Google Scholar 

  138. Cohen JA, Barkhof F, Comi G, et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med. 2010;362:402–15.

    CAS  PubMed  Google Scholar 

  139. Arvin AM, Wolinsky JS, Kappos L, Morris MI. Varicella-zoster virus infections in patients treated with fingolimod: risk assessment and consensus recommendations for management. JAMA Neurol. 2015;72:31–9.

    PubMed  PubMed Central  Google Scholar 

  140. De Stefano N, Tomic D, Radue EW, Sprenger T, Meier DP, Hàring D, Sormani MP. Effect of fingolimod on diffuse brain tissue damage in relapsing-remitting multiple sclerosis patients. Mult Scler Relat Disord. 2016;7:98–101.

    PubMed  Google Scholar 

  141. Coisne C, Mao W, Engelhardt B. Cutting edge: natalizumab blocks adhesion but not initial contact of human T cells to the blood-brain barrier in vivo in an animal model of multiple sclerosis. J Immunol. 2009;182:5909–13.

    CAS  PubMed  Google Scholar 

  142. Polman CH, O’Connor PW, Havrdova E, et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med. 2006;354:899–910.

    CAS  PubMed  Google Scholar 

  143. Plavina T, Subramanyam M, Bloomgren G, et al. Anti-JC virus antibody levels in serum or plasma further define risk of natalizumab-associated progressive multifocal leukoencephalopathy. Ann Neurol. 2014;76:802–12.

    CAS  PubMed  Google Scholar 

  144. Coles AJ, Compston DA, Selmaj KW, et al. Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med. 2008;359:1786–801.

    PubMed  Google Scholar 

  145. Cossburn M, Pace AA, Jones J, et al. Autoimmune disease after alemtuzumab treatment for multiple sclerosis in a multicenter cohort. Neurology. 2011;77:573–9.

    CAS  PubMed  Google Scholar 

  146. Miller AE, Wolinsky JS, Kappos L, et al. Oral teriflunomide for patients with a first clinical episode suggestive of multiple sclerosis (TOPIC): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014;13:977–86.

    CAS  PubMed  Google Scholar 

  147. Giovannoni G, Comi G, Cook S, et al. A placebo-controlled trial of oral cladribine for relapsing multiple sclerosis. N Engl J Med. 2010;362:416–26.

    CAS  PubMed  Google Scholar 

  148. Kappos L, Bar-Or A, Cree BA, et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet. 2018;391:1263–73.

    CAS  PubMed  Google Scholar 

  149. Cohen JA, Arnold DL, Comi G, et al. Safety and efficacy of the selective sphingosine 1-phosphate receptor modulator ozanimod in relapsing multiple sclerosis (RADIANCE): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15:373–81.

    CAS  PubMed  Google Scholar 

  150. Choi JW, Gardell SE, Herr DR, et al. FTY720 (fingolimod) efficacy in an animal model of multiple sclerosis requires astrocyte sphingosine 1-phosphate receptor 1 (S1P1) modulation. Proc Natl Acad Sci U S A. 2011;108:751–6.

    CAS  PubMed  Google Scholar 

  151. O’Sullivan SA, O’Sullivan C, Healy LM, Dev KK, Sheridan GK. Sphingosine 1-phosphate receptors regulate TLR 4-induced CXCL 5 release from astrocytes and microglia. J Neurochem. 2018;144:736–47.

    PubMed  Google Scholar 

  152. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology. 1983;33:1444–52.

    CAS  PubMed  Google Scholar 

Download references

Conflict of Interest Statement

Jun-ichi Kira has received consultancy fees, speaking fees and/or honoraria from Novartis Pharma, Mitsubishi Tanabe Pharma, Boehringer Ingelheim, Teijin Pharma, Takeda Pharmaceutical Company, Otsuka Pharmaceutical, Astellas Pharma, Pfizer Japan, and Eisai Co. Dr. Isobe is supported by a grant from JSPS KAKENHI (Grant No. 18 K07529), and received grant support from Mitsubishi Tanabe Pharma, Osoegawa Neurology Clinic, Bayer Yakuhin, Ltd., and Japan Blood Products Organization.

Funding

This study was supported in part by a Health and Labour Sciences Research Grant on Intractable Diseases (H29-Nanchitou (Nan)-Ippan-043) from the Ministry of Health, Labour, and Welfare, Japan, by the “Practical Research Project for Rare/Intractable Diseases” from the Japan Agency for Medical Research and Development (AMED , 17ek0109115h0003), Japan, by a research grant from the Japanese Multiple Sclerosis Society, by a research grant from the Japan Intractable Disease Research Foundation, by “Glial Assembly” Grants-in-Aid for Scientific Research on Innovative Areas (MEXT KAKENHI Grant Number 25117012) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by a Grant-in-Aid for Scientific Research (A) (JSPS KAKENHI Grant Number 16H02657) from the Japan Society for the Promotion of Science, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-ichi Kira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kira, Ji., Isobe, N. (2019). Multiple Sclerosis. In: Mitoma, H., Manto, M. (eds) Neuroimmune Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-19515-1_15

Download citation

Publish with us

Policies and ethics