Skip to main content

Autoimmune Astrocytopathy

  • Chapter
  • First Online:
Book cover Neuroimmune Diseases

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

Abstract

Astrocytes are the most abundant and heterogeneous type of glial cell in the Central Nervous System. In addition to their role maintaining physiological conditions stable in the CNS, they are recognized as early and highly active players in immune responses in the CNS, and their dysfunction is believed to contribute to neuroimmune disease.

Perhaps one of the most important discoveries in recent years has been the identification of IgG-NMO, a specific pathogenic antibody directed against water channel aquaporin-4 (AQP4). IgG-NMO has not only made neuromyelitis optica diagnosis easier but has allowed differential diagnoses to be established more clearly and lead to the design of better therapeutic alternatives. Likewise, a novel autoantibody directed against GFAP has been identified as biomarker of a relapsing autoimmune form of meningoencephalomyelitis, responsive to steroids, often associated with tumors. Similarly, in Rasmussen’s encephalitis, CD8+ T lymphocytes cause astrocyte apoptosis and loss in affected areas, altering normal neuron function. Reactive astrocytes also play an important role in different CNS infections, not only during acute phases of disease but also long term, and may condition the development of post-infectious sequelae. Finally, multiple mechanisms mediated by astrocytes are known to participate in both the genesis and the progression of MS and in processes of remyelination. Overall, these observations indicate astrocytes actively participate in both pathological and in repair mechanisms, observed in CNS neuroimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AQP4:

Aquaporin 4

ATP:

Adenosine triphosphate

B4GALT5:

4-Galactosyltransferase 5

BAFF:

B-cell activating factor

BBB:

Blood–brain barrier

C1q:

Complement component subunit 1q

CNS:

Central Nervous System

CNTF:

Ciliary neurotrophic factor

CSPGs:

Chondroitin sulfate proteoglycans

Cx:

Connexin

DAMPS:

Danger-associated molecules patterns

EAAT2:

Excitatory amino acid transporter 2

EAE:

Experimental autoimmune encephalomyelitis

ECM:

Extracellular matrix

EPH:

Ephrins

Fas-L:

Fas ligand

FGF:

Fibroblast growth factor

FoxP3:

Forkhead box P3

GAG:

Glycosaminoglycan

GFAP:

Glial fibrillary acidic protein

GLAST:

Glutamate/aspartate transporter

GLT-1:

Glutamate transporter-1

GluR3:

Glutamate receptor 3

GM-CSF:

Granulocyte macrophage colony-stimulating factor

GS:

Glutamine synthetase

HMGB1:

High-mobility box-1

ICAM 1:

Intercellular adhesion molecule 1

IFNs:

Interferons

iNOS:

Inducible nitric oxide synthase

IRF-1:

Interferon regulatory factor 1

ISGs:

Interferon-stimulated genes

LacCer:

Lactosylceramide

LFA-1:

Lymphocyte function-associated antigen

LIF:

Leukemia inhibitory factor

LPS:

Lipopolysaccharide

M-CSF:

Macrophage colony-stimulating factor

MMPs:

Matrix metalloproteinases

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NG2:

Neuron-glial antigen 2

NMDA:

N-methyl-D-aspartate

NMO:

Neuromyelitis optica

NMOSD:

Neuromyelitis optica spectrum disorders

NO:

Nitric oxide

ONOO:

Peroxinitrate

OPCs:

Oligodendrocyte progenitor cells

PAMPs:

Pathogen-associated molecular patterns

PRRs:

Pattern recognition receptors

RAGE:

Receptor for advanced glycation end products

RE:

Rasmussen’s encephalitis

RLRs:

Retinoic acid-inducible gene-like receptors

S100β:

S100 calcium-binding protein

TGF:

Transforming growth factor

Th:

T helper cell

Tim-3:

T cell immunoglobulin and mucin domain 3

TIMPs:

Tissue inhibitors of metalloproteinases

TLR:

Toll-like receptor

Tr1:

Type 1 regulatory T cells

VCAM-1:

Vascular cell adhesion protein 1

VLA-4:

Very late antigen 4

References

  1. Banker GA. Trophic interactions between astroglial cells and hippocampal neurons in culture. Science. 1980;209(4458):809–10.

    Article  CAS  PubMed  Google Scholar 

  2. Kettenmann H, Verkhratsky A. Neuroglia: the 150 years after. Trends Neurosci. 2008;31(12):653–9. https://doi.org/10.1016/j.tins.2008.09.003.

    Article  CAS  PubMed  Google Scholar 

  3. Butt AM, Duncan A, Berry M. Astrocyte associations with nodes of Ranvier: ultrastructural analysis of HRP-filled astrocytes in the mouse optic nerve. J Neurocytol. 1994;23(8):486–99.

    Article  CAS  PubMed  Google Scholar 

  4. Bushong EA, Martone ME, Ellisman MH. Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int J Dev Neurosci. 2004;22(2):73–86. https://doi.org/10.1016/j.ijdevneu.2003.12.008.

    Article  PubMed  Google Scholar 

  5. Witcher MR, Kirov SA, Harris KM. Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia. 2007;55(1):13–23. https://doi.org/10.1002/glia.20415.

    Article  PubMed  Google Scholar 

  6. Foo LC, Allen NJ, Bushong EA, Ventura PB, Chung WS, Zhou L, et al. Development of a method for the purification and culture of rodent astrocytes. Neuron. 2011;71(5):799–811. https://doi.org/10.1016/j.neuron.2011.07.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Farmer WT, Murai K. Resolving astrocyte heterogeneity in the CNS. Front Cell Neurosci. 2017;11:300. https://doi.org/10.3389/fncel.2017.00300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wolburg H, Noell S, Mack A, Wolburg-Buchholz K, Fallier-Becker P. Brain endothelial cells and the glio-vascular complex. Cell Tissue Res. 2009;335(1):75–96. https://doi.org/10.1007/s00441-008-0658-9.

    Article  PubMed  Google Scholar 

  9. Milosevic A, Goldman JE. Potential of progenitors from postnatal cerebellar neuroepithelium and white matter: lineage specified vs. multipotent fate. Mol Cell Neurosci. 2004;26(2):342–53. https://doi.org/10.1016/j.mcn.2004.02.008.

    Article  CAS  PubMed  Google Scholar 

  10. Wang DD, Bordey A. The astrocyte odyssey. Prog Neurobiol. 2008;86(4):342–67. https://doi.org/10.1016/j.pneurobio.2008.09.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Molofsky AV, Krencik R, Ullian EM, Tsai HH, Deneen B, Richardson WD, et al. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev. 2012;26(9):891–907. https://doi.org/10.1101/gad.188326.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsai HH, Li H, Fuentealba LC, Molofsky AV, Taveira-Marques R, Zhuang H, et al. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science. 2012;337(6092):358–62. https://doi.org/10.1126/science.1222381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lundgaard I, Osorio MJ, Kress BT, Sanggaard S, Nedergaard M. White matter astrocytes in health and disease. Neuroscience. 2014;276:161–73. https://doi.org/10.1016/j.neuroscience.2013.10.050.

    Article  CAS  PubMed  Google Scholar 

  14. Sun D, Jakobs TC. Structural remodeling of astrocytes in the injured CNS. Neuroscientist. 2012;18(6):567–88. https://doi.org/10.1177/1073858411423441.

    Article  CAS  PubMed  Google Scholar 

  15. Bo L. The histopathology of grey matter demyelination in multiple sclerosis. Acta Neurol Scand Suppl. 2009;120(189):51–7. https://doi.org/10.1111/j.1600-0404.2009.01216.x.

    Article  Google Scholar 

  16. Seifert G, Schilling K, Steinhauser C. Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci. 2006;7(3):194–206. https://doi.org/10.1038/nrn1870.

    Article  CAS  PubMed  Google Scholar 

  17. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53. https://doi.org/10.1038/nrn1824.

    Article  CAS  PubMed  Google Scholar 

  18. Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007;10(11):1369–76. https://doi.org/10.1038/nn2003.

    Article  CAS  PubMed  Google Scholar 

  19. Chesler M, Kaila K. Modulation of pH by neuronal activity. Trends Neurosci. 1992;15(10):396–402.

    Article  CAS  PubMed  Google Scholar 

  20. Dietschy JM, Turley SD. Thematic review series: brain lipids. Cholesterol metabolism in the central nervous system during early development and in the mature animal. J Lipid Res. 2004;45(8):1375–97. https://doi.org/10.1194/jlr.R400004-JLR200.

    Article  CAS  PubMed  Google Scholar 

  21. Magistretti PJ. Neuron-glia metabolic coupling and plasticity. J Exp Biol. 2006;209.(Pt 12:2304–11. https://doi.org/10.1242/jeb.02208.

    Article  CAS  PubMed  Google Scholar 

  22. Akwa Y, Sananes N, Gouezou M, Robel P, Baulieu EE, Le Goascogne C. Astrocytes and neurosteroids: metabolism of pregnenolone and dehydroepiandrosterone. Regulation by cell density. J Cell Biol. 1993;121(1):135–43.

    Article  CAS  PubMed  Google Scholar 

  23. Allen NJ, Eroglu C. Cell biology of astrocyte-synapse interactions. Neuron. 2017;96(3):697–708. https://doi.org/10.1016/j.neuron.2017.09.056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gimenez MA, Sim JE, Russell JH. TNFR1-dependent VCAM-1 expression by astrocytes exposes the CNS to destructive inflammation. J Neuroimmunol. 2004;151(1–2):116–25. https://doi.org/10.1016/j.jneuroim.2004.02.012.

    Article  CAS  PubMed  Google Scholar 

  25. Sobel RA, Mitchell ME, Fondren G. Intercellular adhesion molecule-1 (ICAM-1) in cellular immune reactions in the human central nervous system. Am J Pathol. 1990;136(6):1309–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Dong Y, Benveniste EN. Immune function of astrocytes. Glia. 2001;36(2):180–90.

    Article  CAS  PubMed  Google Scholar 

  27. Miljkovic D, Momcilovic M, Stojanovic I, Stosic-Grujicic S, Ramic Z, Mostarica-Stojkovic M. Astrocytes stimulate interleukin-17 and interferon-gamma production in vitro. J Neurosci Res. 2007;85(16):3598–606. https://doi.org/10.1002/jnr.21453.

    Article  CAS  PubMed  Google Scholar 

  28. Zhou Y, Sonobe Y, Akahori T, Jin S, Kawanokuchi J, Noda M, et al. IL-9 promotes Th17 cell migration into the central nervous system via CC chemokine ligand-20 produced by astrocytes. J Immunol. 2011;186(7):4415–21. https://doi.org/10.4049/jimmunol.1003307.

    Article  CAS  PubMed  Google Scholar 

  29. Saikali P, Antel JP, Pittet CL, Newcombe J, Arbour N. Contribution of astrocyte-derived IL-15 to CD8 T cell effector functions in multiple sclerosis. J Immunol. 2010;185(10):5693–703. https://doi.org/10.4049/jimmunol.1002188.

    Article  CAS  PubMed  Google Scholar 

  30. Zhu C, Anderson AC, Kuchroo VK. TIM-3 and its regulatory role in immune responses. Curr Top Microbiol Immunol. 2011;350:1–15. https://doi.org/10.1007/82_2010_84.

    Article  CAS  PubMed  Google Scholar 

  31. Krumbholz M, Theil D, Derfuss T, Rosenwald A, Schrader F, Monoranu CM, et al. BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med. 2005;201(2):195–200. https://doi.org/10.1084/jem.20041674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. DeWitt DA, Perry G, Cohen M, Doller C, Silver J. Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer’s disease. Exp Neurol. 1998;149(2):329–40. https://doi.org/10.1006/exnr.1997.6738.

    Article  CAS  PubMed  Google Scholar 

  33. Chastain EM, Duncan DS, Rodgers JM, Miller SD. The role of antigen presenting cells in multiple sclerosis. Biochim Biophys Acta. 2011;1812(2):265–74. https://doi.org/10.1016/j.bbadis.2010.07.008.

    Article  CAS  PubMed  Google Scholar 

  34. Satoh J, Lee YB, Kim SU. T-cell costimulatory molecules B7-1 (CD80) and B7-2 (CD86) are expressed in human microglia but not in astrocytes in culture. Brain Res. 1995;704(1):92–6.

    Article  CAS  PubMed  Google Scholar 

  35. Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 2017;541(7638):481–7. https://doi.org/10.1038/nature21029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jha MK, Jo M, Kim JH, Suk K. Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist. 2019;25(3):227–40. https://doi.org/10.1177/1073858418783959.

    Article  CAS  PubMed  Google Scholar 

  37. Lennon VA, Wingerchuk DM, Kryzer TJ, Pittock SJ, Lucchinetti CF, Fujihara K, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet. 2004;364(9451):2106–12. https://doi.org/10.1016/S0140-6736(04)17551-X.

    Article  CAS  PubMed  Google Scholar 

  38. Wingerchuk DM, Lennon VA, Lucchinetti CF, Pittock SJ, Weinshenker BG. The spectrum of neuromyelitis optica. Lancet Neurol. 2007;6(9):805–15. https://doi.org/10.1016/S1474-4422(07)70216-8.

    Article  CAS  PubMed  Google Scholar 

  39. Agre P, Sasaki S, Chrispeels MJ. Aquaporins: a family of water channel proteins. Am J Phys. 1993;265(3. Pt 2):F461. https://doi.org/10.1152/ajprenal.1993.265.3.F461.

    Article  CAS  Google Scholar 

  40. Zelenina M. Regulation of brain aquaporins. Neurochem Int. 2010;57(4):468–88. https://doi.org/10.1016/j.neuint.2010.03.022.

    Article  CAS  PubMed  Google Scholar 

  41. Rossi A, Pisani F, Nicchia GP, Svelto M, Frigeri A. Evidences for a leaky scanning mechanism for the synthesis of the shorter M23 protein isoform of aquaporin-4: implication in orthogonal array formation and neuromyelitis optica antibody interaction. J Biol Chem. 2010;285(7):4562–9. https://doi.org/10.1074/jbc.M109.069245.

    Article  CAS  PubMed  Google Scholar 

  42. Amiry-Moghaddam M, Williamson A, Palomba M, Eid T, de Lanerolle NC, Nagelhus EA, et al. Delayed K+ clearance associated with aquaporin-4 mislocalization: phenotypic defects in brains of alpha-syntrophin-null mice. Proc Natl Acad Sci U S A. 2003;100(23):13615–20. https://doi.org/10.1073/pnas.2336064100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Arcienega II, Brunet JF, Bloch J, Badaut J. Cell locations for AQP1, AQP4 and 9 in the non-human primate brain. Neuroscience. 2010;167(4):1103–14. https://doi.org/10.1016/j.neuroscience.2010.02.059.

    Article  CAS  PubMed  Google Scholar 

  44. Popescu BF, Lennon VA, Parisi JE, Howe CL, Weigand SD, Cabrera-Gomez JA, et al. Neuromyelitis optica unique area postrema lesions: nausea, vomiting, and pathogenic implications. Neurology. 2011;76(14):1229–37. https://doi.org/10.1212/WNL.0b013e318214332c.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lucchinetti CF, Guo Y, Popescu BF, Fujihara K, Itoyama Y, Misu T. The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica. Brain Pathol. 2014;24(1):83–97. https://doi.org/10.1111/bpa.12099.

    Article  CAS  PubMed  Google Scholar 

  46. Blanchard C, Rothenberg ME. Biology of the eosinophil. Adv Immunol. 2009;101:81–121. https://doi.org/10.1016/S0065-2776(08)01003-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hinson SR, Romero MF, Popescu BF, Lucchinetti CF, Fryer JP, Wolburg H, et al. Molecular outcomes of neuromyelitis optica (NMO)-IgG binding to aquaporin-4 in astrocytes. Proc Natl Acad Sci U S A. 2012;109(4):1245–50. https://doi.org/10.1073/pnas.1109980108.

    Article  PubMed  Google Scholar 

  48. Illarionova NB, Gunnarson E, Li Y, Brismar H, Bondar A, Zelenin S, et al. Functional and molecular interactions between aquaporins and Na,K-ATPase. Neuroscience. 2010;168(4):915–25. https://doi.org/10.1016/j.neuroscience.2009.11.062.

    Article  CAS  PubMed  Google Scholar 

  49. Hinson SR, Roemer SF, Lucchinetti CF, Fryer JP, Kryzer TJ, Chamberlain JL, et al. Aquaporin-4-binding autoantibodies in patients with neuromyelitis optica impair glutamate transport by down-regulating EAAT2. J Exp Med. 2008;205(11):2473–81. https://doi.org/10.1084/jem.20081241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iorio R, Lennon VA. Neural antigen-specific autoimmune disorders. Immunol Rev. 2012;248(1):104–21. https://doi.org/10.1111/j.1600-065X.2012.01144.x.

    Article  PubMed  Google Scholar 

  51. Fang B, McKeon A, Hinson SR, Kryzer TJ, Pittock SJ, Aksamit AJ, et al. Autoimmune glial fibrillary acidic protein astrocytopathy: a novel meningoencephalomyelitis. JAMA Neurol. 2016;73(11):1297–307. https://doi.org/10.1001/jamaneurol.2016.2549.

    Article  PubMed  Google Scholar 

  52. Flanagan EP, Hinson SR, Lennon VA, Fang B, Aksamit AJ, Morris PP, et al. Glial fibrillary acidic protein immunoglobulin G as biomarker of autoimmune astrocytopathy: analysis of 102 patients. Ann Neurol. 2017;81(2):298–309. https://doi.org/10.1002/ana.24881.

    Article  CAS  PubMed  Google Scholar 

  53. Middeldorp J, Hol EM. GFAP in health and disease. Prog Neurobiol. 2011;93(3):421–43. https://doi.org/10.1016/j.pneurobio.2011.01.005.

    Article  CAS  PubMed  Google Scholar 

  54. Yang X, Liang J, Huang Q, Xu H, Gao C, Long Y, et al. Treatment of autoimmune glial fibrillary acidic protein astrocytopathy: follow-up in 7 cases. Neuroimmunomodulation. 2017;24(2):113–9. https://doi.org/10.1159/000479948.

    Article  CAS  PubMed  Google Scholar 

  55. Iorio R, Damato V, Evoli A, Gessi M, Gaudino S, Di Lazzaro V, et al. Clinical and immunological characteristics of the spectrum of GFAP autoimmunity: a case series of 22 patients. J Neurol Neurosurg Psychiatry. 2018;89(2):138–46. https://doi.org/10.1136/jnnp-2017-316583.

    Article  PubMed  Google Scholar 

  56. Dubey D, Hinson SR, Jolliffe EA, Zekeridou A, Flanagan EP, Pittock SJ, et al. Autoimmune GFAP astrocytopathy: prospective evaluation of 90 patients in 1 year. J Neuroimmunol. 2018;321:157–63. https://doi.org/10.1016/j.jneuroim.2018.04.016.

    Article  CAS  PubMed  Google Scholar 

  57. Li J, Xu Y, Ren H, Zhu Y, Peng B, Cui L. Autoimmune GFAP astrocytopathy after viral encephalitis: a case report. Mult Scler Relat Disord. 2018;21:84–7. https://doi.org/10.1016/j.msard.2018.02.020.

    Article  PubMed  Google Scholar 

  58. Gresa-Arribas N, Titulaer MJ, Torrents A, Aguilar E, McCracken L, Leypoldt F, et al. Antibody titres at diagnosis and during follow-up of anti-NMDA receptor encephalitis: a retrospective study. Lancet Neurol. 2014;13(2):167–77. https://doi.org/10.1016/S1474-4422(13)70282-5.

    Article  CAS  PubMed  Google Scholar 

  59. Majed M, Fryer JP, McKeon A, Lennon VA, Pittock SJ. Clinical utility of testing AQP4-IgG in CSF: guidance for physicians. Neurol Neuroimmunol Neuroinflamm. 2016;3(3):e231. https://doi.org/10.1212/NXI.0000000000000231.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008;7(12):1091–8. https://doi.org/10.1016/S1474-4422(08)70224-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zekeridou A, Lennon VA. Aquaporin-4 autoimmunity. Neurol Neuroimmunol Neuroinflamm. 2015;2(4):e110. https://doi.org/10.1212/NXI.0000000000000110.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Darnell RB, Posner JB. Paraneoplastic syndromes involving the nervous system. N Engl J Med. 2003;349(16):1543–54. https://doi.org/10.1056/NEJMra023009.

    Article  CAS  PubMed  Google Scholar 

  63. Sasaki K, Bean A, Shah S, Schutten E, Huseby PG, Peters B, et al. Relapsing-remitting central nervous system autoimmunity mediated by GFAP-specific CD8 T cells. J Immunol. 2014;192(7):3029–42. https://doi.org/10.4049/jimmunol.1302911.

    Article  CAS  PubMed  Google Scholar 

  64. Long Y, Liang J, Xu H, Huang Q, Yang J, Gao C, et al. Autoimmune glial fibrillary acidic protein astrocytopathy in Chinese patients: a retrospective study. Eur J Neurol. 2018;25(3):477–83. https://doi.org/10.1111/ene.13531.

    Article  CAS  PubMed  Google Scholar 

  65. Yang X, Xu H, Ding M, Huang Q, Chen B, Yang H, et al. Overlapping autoimmune syndromes in patients with glial fibrillary acidic protein antibodies. Front Neurol. 2018;9:251. https://doi.org/10.3389/fneur.2018.00251.

    Article  PubMed  PubMed Central  Google Scholar 

  66. McKeon A, Lennon VA, LaChance DH, Klein CJ, Pittock SJ. Striational antibodies in a paraneoplastic context. Muscle Nerve. 2013;47(4):585–7. https://doi.org/10.1002/mus.23774.

    Article  CAS  PubMed  Google Scholar 

  67. Klein RS, Hunter CA. Protective and pathological immunity during central nervous system infections. Immunity. 2017;46(6):891–909. https://doi.org/10.1016/j.immuni.2017.06.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stenzel W, Soltek S, Schluter D, Deckert M. The intermediate filament GFAP is important for the control of experimental murine Staphylococcus aureus-induced brain abscess and Toxoplasma encephalitis. J Neuropathol Exp Neurol. 2004;63(6):631–40.

    Article  PubMed  Google Scholar 

  69. Esen N, Shuffield D, Syed MM, Kielian T. Modulation of connexin expression and gap junction communication in astrocytes by the gram-positive bacterium S. aureus. Glia. 2007;55(1):104–17. https://doi.org/10.1002/glia.20438.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wilson EH, Hunter CA. The role of astrocytes in the immunopathogenesis of toxoplasmic encephalitis. Int J Parasitol. 2004;34(5):543–8. https://doi.org/10.1016/j.ijpara.2003.12.010.

    Article  CAS  PubMed  Google Scholar 

  71. Medana IM, Day NP, Hien TT, Mai NT, Bethell D, Phu NH, et al. Axonal injury in cerebral malaria. Am J Pathol. 2002;160(2):655–66. https://doi.org/10.1016/S0002-9440(10)64885-7.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Crill EK, Furr-Rogers SR, Marriott I. RIG-I is required for VSV-induced cytokine production by murine glia and acts in combination with DAI to initiate responses to HSV-1. Glia. 2015;63(12):2168–80. https://doi.org/10.1002/glia.22883.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Daniels BP, Holman DW, Cruz-Orengo L, Jujjavarapu H, Durrant DM, Klein RS. Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via competing innate cytokine signals. MBio. 2014;5(5):e01476–14. https://doi.org/10.1128/mBio.01476-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cisneros IE, Ghorpade A. HIV-1, methamphetamine and astrocyte glutamate regulation: combined excitotoxic implications for neuro-AIDS. Curr HIV Res. 2012;10(5):392–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hu X, Chakravarty SD, Ivashkiv LB. Regulation of interferon and toll-like receptor signaling during macrophage activation by opposing feedforward and feedback inhibition mechanisms. Immunol Rev. 2008;226:41–56. https://doi.org/10.1111/j.1600-065X.2008.00707.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lin MT, Hinton DR, Marten NW, Bergmann CC, Stohlman SA. Antibody prevents virus reactivation within the central nervous system. J Immunol. 1999;162(12):7358–68.

    CAS  PubMed  Google Scholar 

  77. Hamo L, Stohlman SA, Otto-Duessel M, Bergmann CC. Distinct regulation of MHC molecule expression on astrocytes and microglia during viral encephalomyelitis. Glia. 2007;55(11):1169–77. https://doi.org/10.1002/glia.20538.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rasmussen T, Olszewski J, Lloydsmith D. Focal seizures due to chronic localized encephalitis. Neurology. 1958;8(6):435–45.

    Article  CAS  PubMed  Google Scholar 

  79. Farrell MA, Droogan O, Secor DL, Poukens V, Quinn B, Vinters HV. Chronic encephalitis associated with epilepsy: immunohistochemical and ultrastructural studies. Acta Neuropathol. 1995;89(4):313–21.

    Article  CAS  PubMed  Google Scholar 

  80. Bien CG, Granata T, Antozzi C, Cross JH, Dulac O, Kurthen M, et al. Pathogenesis, diagnosis and treatment of Rasmussen encephalitis: a European consensus statement. Brain. 2005;128(Pt 3):454–71. https://doi.org/10.1093/brain/awh415.

    Article  CAS  PubMed  Google Scholar 

  81. Bauer J, Elger CE, Hans VH, Schramm J, Urbach H, Lassmann H, et al. Astrocytes are a specific immunological target in Rasmussen’s encephalitis. Ann Neurol. 2007;62(1):67–80. https://doi.org/10.1002/ana.21148.

    Article  PubMed  Google Scholar 

  82. Rogers SW, Andrews PI, Gahring LC, Whisenand T, Cauley K, Crain B, et al. Autoantibodies to glutamate receptor GluR3 in Rasmussen’s encephalitis. Science. 1994;265(5172):648–51.

    Article  CAS  PubMed  Google Scholar 

  83. Andrews PI, Dichter MA, Berkovic SF, Newton MR, McNamara JO. Plasmapheresis in Rasmussen’s encephalitis. Neurology. 1996;46(1):242–6.

    Article  CAS  PubMed  Google Scholar 

  84. Twyman RE, Gahring LC, Spiess J, Rogers SW. Glutamate receptor antibodies activate a subset of receptors and reveal an agonist binding site. Neuron. 1995;14(4):755–62.

    Article  CAS  PubMed  Google Scholar 

  85. Whitney KD, McNamara JO. GluR3 autoantibodies destroy neural cells in a complement-dependent manner modulated by complement regulatory proteins. J Neurosci. 2000;20(19):7307–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Levite M, Hermelin A. Autoimmunity to the glutamate receptor in mice – a model for Rasmussen’s encephalitis? J Autoimmun. 1999;13(1):73–82. https://doi.org/10.1006/jaut.1999.0297.

    Article  CAS  PubMed  Google Scholar 

  87. Schwab N, Bien CG, Waschbisch A, Becker A, Vince GH, Dornmair K, et al. CD8+ T-cell clones dominate brain infiltrates in Rasmussen encephalitis and persist in the periphery. Brain. 2009;132.(Pt 5:1236–46. https://doi.org/10.1093/brain/awp003.

    Article  PubMed  Google Scholar 

  88. Mantegazza R, Bernasconi P, Baggi F, Spreafico R, Ragona F, Antozzi C, et al. Antibodies against GluR3 peptides are not specific for Rasmussen’s encephalitis but are also present in epilepsy patients with severe, early onset disease and intractable seizures. J Neuroimmunol. 2002;131(1–2):179–85.

    Article  CAS  PubMed  Google Scholar 

  89. Luan G, Gao Q, Zhai F, Chen Y, Li T. Upregulation of HMGB1, toll-like receptor and RAGE in human Rasmussen’s encephalitis. Epilepsy Res. 2016;123:36–49. https://doi.org/10.1016/j.eplepsyres.2016.03.005.

    Article  CAS  PubMed  Google Scholar 

  90. Bianchi ME, Manfredi AA. Immunology. Dangers in and out. Science. 2009;323(5922):1683–4. https://doi.org/10.1126/science.1172794.

    Article  CAS  PubMed  Google Scholar 

  91. Park JS, Arcaroli J, Yum HK, Yang H, Wang H, Yang KY, et al. Activation of gene expression in human neutrophils by high mobility group box 1 protein. Am J Physiol Cell Physiol. 2003;284(4):C870–9. https://doi.org/10.1152/ajpcell.00322.2002.

    Article  CAS  PubMed  Google Scholar 

  92. Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418(6894):191–5. https://doi.org/10.1038/nature00858.

    Article  CAS  PubMed  Google Scholar 

  93. Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med. 2010;16(4):413–9. https://doi.org/10.1038/nm.2127.

    Article  CAS  PubMed  Google Scholar 

  94. Walker L, Sills GJ. Inflammation and epilepsy: the foundations for a new therapeutic approach in epilepsy? Epilepsy Curr. 2012;12(1):8–12. https://doi.org/10.5698/1535-7511-12.1.8.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Brosnan CF, Raine CS. The astrocyte in multiple sclerosis revisited. Glia. 2013;61(4):453–65. https://doi.org/10.1002/glia.22443.

    Article  PubMed  Google Scholar 

  96. Pham H, Ramp AA, Klonis N, Ng SW, Klopstein A, Ayers MM, et al. The astrocytic response in early experimental autoimmune encephalomyelitis occurs across both the grey and white matter compartments. J Neuroimmunol. 2009;208(1–2):30–9. https://doi.org/10.1016/j.jneuroim.2008.12.010.

    Article  CAS  PubMed  Google Scholar 

  97. Ponath G, Ramanan S, Mubarak M, Housley W, Lee S, Sahinkaya FR, et al. Myelin phagocytosis by astrocytes after myelin damage promotes lesion pathology. Brain. 2017;140(2):399–413. https://doi.org/10.1093/brain/aww298.

    Article  PubMed  Google Scholar 

  98. Michel L, Touil H, Pikor NB, Gommerman JL, Prat A, Bar-Or A. B cells in the multiple sclerosis central nervous system: trafficking and contribution to CNS-compartmentalized inflammation. Front Immunol. 2015;6:636. https://doi.org/10.3389/fimmu.2015.00636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Bal-Price A, Brown GC. Inflammatory neurodegeneration mediated by nitric oxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. J Neurosci. 2001;21(17):6480–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hamby ME, Hewett JA, Hewett SJ. TGF-beta1 potentiates astrocytic nitric oxide production by expanding the population of astrocytes that express NOS-2. Glia. 2006;54(6):566–77. https://doi.org/10.1002/glia.20411.

    Article  PubMed  Google Scholar 

  101. Kumar S, Singh BK, Prasad AK, Parmar VS, Biswal S, Ghosh B. Ethyl 3′,4′,5′-trimethoxythionocinnamate modulates NF-kappaB and Nrf2 transcription factors. Eur J Pharmacol. 2013;700(1–3):32–41. https://doi.org/10.1016/j.ejphar.2012.12.004.

    Article  CAS  PubMed  Google Scholar 

  102. Rossi S, Motta C, Studer V, Barbieri F, Buttari F, Bergami A, et al. Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Mult Scler. 2014;20(3):304–12. https://doi.org/10.1177/1352458513498128.

    Article  CAS  PubMed  Google Scholar 

  103. Matute C, Sanchez-Gomez MV, Martinez-Millan L, Miledi R. Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes. Proc Natl Acad Sci U S A. 1997;94(16):8830–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron. 1996;16(3):675–86.

    Article  CAS  PubMed  Google Scholar 

  105. Ouardouz M, Coderre E, Basak A, Chen A, Zamponi GW, Hameed S, et al. Glutamate receptors on myelinated spinal cord axons: I. GluR6 kainate receptors. Ann Neurol. 2009;65(2):151–9. https://doi.org/10.1002/ana.21533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ouardouz M, Coderre E, Zamponi GW, Hameed S, Yin X, Trapp BD, et al. Glutamate receptors on myelinated spinal cord axons: II. AMPA and GluR5 receptors. Ann Neurol. 2009;65(2):160–6. https://doi.org/10.1002/ana.21539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Salter MG, Fern R. NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature. 2005;438(7071):1167–71. https://doi.org/10.1038/nature04301.

    Article  CAS  PubMed  Google Scholar 

  108. Pitt D, Werner P, Raine CS. Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med. 2000;6(1):67–70. https://doi.org/10.1038/71555.

    Article  CAS  PubMed  Google Scholar 

  109. Franke H, Illes P. Pathological potential of astroglial purinergic receptors. Adv Neurobiol. 2014;11:213–56. https://doi.org/10.1007/978-3-319-08894-5_11.

    Article  PubMed  Google Scholar 

  110. Narcisse L, Scemes E, Zhao Y, Lee SC, Brosnan CF. The cytokine IL-1beta transiently enhances P2X7 receptor expression and function in human astrocytes. Glia. 2005;49(2):245–58. https://doi.org/10.1002/glia.20110.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Matute C, Torre I, Perez-Cerda F, Perez-Samartin A, Alberdi E, Etxebarria E, et al. P2X(7) receptor blockade prevents ATP excitotoxicity in oligodendrocytes and ameliorates experimental autoimmune encephalomyelitis. J Neurosci. 2007;27(35):9525–33. https://doi.org/10.1523/JNEUROSCI.0579-07.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mayo L, Trauger SA, Blain M, Nadeau M, Patel B, Alvarez JI, et al. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nat Med. 2014;20(10):1147–56. https://doi.org/10.1038/nm.3681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bundesen LQ, Scheel TA, Bregman BS, Kromer LF. Ephrin-B2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats. J Neurosci. 2003;23(21):7789–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Robel S, Berninger B, Gotz M. The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci. 2011;12(2):88–104. https://doi.org/10.1038/nrn2978.

    Article  CAS  PubMed  Google Scholar 

  115. Balasingam V, Tejada-Berges T, Wright E, Bouckova R, Yong VW. Reactive astrogliosis in the neonatal mouse brain and its modulation by cytokines. J Neurosci. 1994;14(2):846–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Sherman LS, Struve JN, Rangwala R, Wallingford NM, Tuohy TM, Kuntz C. Hyaluronate-based extracellular matrix: keeping glia in their place. Glia. 2002;38(2):93–102.

    Article  PubMed  Google Scholar 

  117. Soilu-Hanninen M, Laaksonen M, Hanninen A, Eralinna JP, Panelius M. Downregulation of VLA-4 on T cells as a marker of long term treatment response to interferon beta-1a in MS. J Neuroimmunol. 2005;167(1–2):175–82. https://doi.org/10.1016/j.jneuroim.2005.06.022.

    Article  CAS  PubMed  Google Scholar 

  118. Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med. 2005;11(9):966–72. https://doi.org/10.1038/nm1279.

    Article  CAS  PubMed  Google Scholar 

  119. Johnson-Green PC, Dow KE, Riopelle RJ. Characterization of glycosaminoglycans produced by primary astrocytes in vitro. Glia. 1991;4(3):314–21. https://doi.org/10.1002/glia.440040309.

    Article  CAS  PubMed  Google Scholar 

  120. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002;416(6881):636–40. https://doi.org/10.1038/416636a.

    Article  CAS  PubMed  Google Scholar 

  121. Yin HH, Knowlton BJ. The role of the basal ganglia in habit formation. Nat Rev Neurosci. 2006;7(6):464–76. https://doi.org/10.1038/nrn1919.

    Article  CAS  PubMed  Google Scholar 

  122. Zhu X, Bergles DE, Nishiyama A. NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development. 2008;135(1):145–57. https://doi.org/10.1242/dev.004895.

    Article  CAS  PubMed  Google Scholar 

  123. Fidler PS, Schuette K, Asher RA, Dobbertin A, Thornton SR, Calle-Patino Y, et al. Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan is NG2. J Neurosci. 1999;19(20):8778–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sobel RA. Ephrin A receptors and ligands in lesions and normal-appearing white matter in multiple sclerosis. Brain Pathol. 2005;15(1):35–45.

    Article  CAS  PubMed  Google Scholar 

  125. Wahl S, Barth H, Ciossek T, Aktories K, Mueller BK. Ephrin-A5 induces collapse of growth cones by activating Rho and Rho kinase. J Cell Biol. 2000;149(2):263–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Satoh J, Tabunoki H, Yamamura T, Arima K, Konno H. TROY and LINGO-1 expression in astrocytes and macrophages/microglia in multiple sclerosis lesions. Neuropathol Appl Neurobiol. 2007;33(1):99–107. https://doi.org/10.1111/j.1365-2990.2006.00787.x.

    Article  CAS  PubMed  Google Scholar 

  127. Fujita Y, Takashima R, Endo S, Takai T, Yamashita T. The p75 receptor mediates axon growth inhibition through an association with PIR-B. Cell Death Dis. 2011;2:e198. https://doi.org/10.1038/cddis.2011.85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Williams A, Piaton G, Lubetzki C. Astrocytes – friends or foes in multiple sclerosis? Glia. 2007;55(13):1300–12. https://doi.org/10.1002/glia.20546.

    Article  PubMed  Google Scholar 

  129. Soung A, Klein RS. Viral encephalitis and neurologic diseases: focus on astrocytes. Trends Mol Med. 2018;24:950–62.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by an unrestricted grant from FLENI.

The authors thank Dr. Ismael Calandri for preparation of some figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Correale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Correale, J., Gaitán, M.I. (2019). Autoimmune Astrocytopathy. In: Mitoma, H., Manto, M. (eds) Neuroimmune Diseases. Contemporary Clinical Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-030-19515-1_10

Download citation

Publish with us

Policies and ethics