Skip to main content

The Association Between Spinal Posture and Spinal Biomechanics in Modern Humans: Implications for Extinct Hominins

  • Chapter
  • First Online:
Spinal Evolution

Abstract

The vertebral column is the fundamental body part that determines locomotion and function in vertebrates. Understanding spinal posture, kinetics and kinematics is of great importance to the study of the paleobiology of extinct species. When discussing the biomechanics of the spine of extinct hominins, arguments are based solely on osseous material, as soft tissues are basically absent from the fossil record and because there is no living representative of these species to track and measure movement and function. In this article, we tried to determine the interactions between spinal posture and biomechanics within modern humans and translate the results to extinct hominins. Our main findings indicate that each group/lineage of hominins had special biomechanical characteristics. Early Homo sapiens and Homo erectus with moderate to high spinal curvatures, similar to the posture of modern humans, probably had similar spinal biomechanical characteristics as modern humans. Neanderthal lineage hominins (NLH) with small spinal curvatures might have had somewhat different biomechanics characterized by more stable spine, with reduced shock attenuation abilities compared to modern humans. NLH probably also preferred to squat rather than stoop and had better overhead throwing kinematics compared to modern humans. Australopithecus probably had lumbar biomechanical characteristics within the range of modern humans together with stable cervical spine and a small cervical range of motion (ROM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams M, Hutton W (1982) Prolapsed intervertebral disc: a hyperflexion injury. Spine 7(3):184–191

    Article  CAS  PubMed  Google Scholar 

  • Adams M, Hutton W (1985) The effect of posture on the lumbar spine. J Bone Joint Surg 67(4):625–629

    Article  CAS  Google Scholar 

  • Addison BJ, Lieberman DE (2015) Tradeoffs between impact loading rate, vertical impulse and effective mass for walkers and heel strike runners wearing footwear of varying stiffness. J Biomech 48(7):1318–1324

    Article  PubMed  Google Scholar 

  • Alpayci M, Åženköy E, Delen V, Åžah V, Yazmalar L, Erden M, Toprak M, Kaplan Åž (2016) Decreased neck muscle strength in patients with the loss of cervical lordosis. Clin Biomech 33:98–102

    Article  Google Scholar 

  • Arlegi M, Gómez-Olivencia A, Albessard L, Martínez I, Balzeau A, Arsuaga JL, Been E (2017) The role of allometry and posture in the evolution of the hominin subaxial cervical spine. J Hum Evol 104:80–99

    Article  PubMed  Google Scholar 

  • Assi A, Bakouny Z, Massaad A, Lafage V, Saghbini E, Kreichati G, Skalli W, Ghanem I (2016) How the type of sagittal alignment defined by Roussouly determines the gait of the asymptomatic adult subject. Revue de Chirurgie Orthopédique et Traumatologique 102(7):S179–S180

    Article  Google Scholar 

  • Bailey JF (2016) The effects of postural loading, sacral orientation, and age on sex differences in lumbar functional morphology and health. University of Washington, Seattle, WA

    Google Scholar 

  • Bailey JF, Miller SL, Khieu K, O’Neill CW, Healey RM, Coughlin DG, Sayson JV, Chang DG, Hargens AR, Lotz JC (2018) From the international space station to the clinic: how prolonged unloading may disrupt lumbar spine stability. Spine J 18(1):7–14

    Article  PubMed  Google Scholar 

  • Bakouny Z, Assi A, Massaad A, Saghbini E, Lafage V, Kreichati G, Skalli W, Ghanem I (2016) Roussouly’s sagittal spino-pelvic morphotypes as determinants of gait in asymptomatic adult subjects. Gait Posture 49:57

    Article  Google Scholar 

  • Bakouny Z, Assi A, Massaad A, Saghbini E, Lafage V, Skalli W, Ghanem I, Kreichati G (2017) Roussouly’s sagittal spino-pelvic morphotypes as determinants of gait in asymptomatic adult subjects. Gait Posture 54:27–33

    Article  PubMed  Google Scholar 

  • Been E, Gómez-Olivencia A, Kramer PA (2012) Lumbar lordosis of extinct hominins. Am J Phys Anthropol 147(1):64–77

    Article  PubMed  Google Scholar 

  • Been E, Gómez-Olivencia A, Kramer PA (2014) Brief communication: lumbar lordosis in extinct hominins: implications of the pelvic incidence. Am J Phys Anthropol 154(2):307–314

    Article  PubMed  Google Scholar 

  • Been E, Gómez-Olivencia A, Shefi S, Soudack M, Bastir M, Barash A (2017) Evolution of spinopelvic alignment in hominins. Anat Rec 300(5):900–911

    Article  Google Scholar 

  • Been E, Kalichman L (2014) Lumbar lordosis. Spine J 14(1):87–97

    Article  PubMed  Google Scholar 

  • Been E, Peleg S, Marom A, Barash A (2010) Morphology and function of the lumbar spine of the Kebara 2 Neandertal. Am J Phys Anthropol 142(4):549–557

    Article  PubMed  Google Scholar 

  • Borstad JD, Ludewig PM (2005) The effect of long versus short pectoralis minor resting length on scapular kinematics in healthy individuals. J Orthop Sports Phys Ther 35(4):227–238

    Article  PubMed  Google Scholar 

  • Briggs AM, Van Dieën JH, Wrigley TV, Greig AM, Phillips B, Lo SK, Bennell KL (2007) Thoracic kyphosis affects spinal loads and trunk muscle force. Phys Ther 87(5):595–607

    Article  PubMed  Google Scholar 

  • Carretero JM, Lorenzo C, Arsuaga JL (1999) Axial and appendicular skeleton of Homo antecessor. J Hum Evol 37(3–4):459–499

    Article  CAS  PubMed  Google Scholar 

  • Castillo ER, Hsu C, Mair RW, Lieberman DE (2017) Testing biomechanical models of human lumbar lordosis variability. Am J Phys Anthropol 163(1):110–121

    Article  PubMed  Google Scholar 

  • Castillo ER, Lieberman DE (2018) Shock attenuation in the human lumbar spine during walking and running. J Exp Biol 221:jeb177949

    Article  PubMed  Google Scholar 

  • Charles RH (1894) Morphological peculiarities in the Panjabi, and their bearing on the question of the transmission of acquired characters. J Anat Physiol 28(Pt 3):271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cho M, Lee Y, Kim CS, Gong W (2011) Correlations among sacral angle, lumbar lordosis, lumbar ROM, static and dynamic lumbar stability in college students. J Phys Ther Sci 23(5):793–795

    Article  Google Scholar 

  • Cook DC, Buikstra JE, DeRousseau CJ, Johanson DC (1983) Vertebral pathology in the Afar australopithecines. Am J Phys Anthropol 60(1):83–101

    Article  CAS  PubMed  Google Scholar 

  • Crawford HJ, Jull GA (1993) The influence of thoracic posture and movement on range of arm elevation. Physiother Theory Pract 9(3):143–148

    Article  Google Scholar 

  • Crisco J, Panjabi M, Yamamoto I, Oxland T (1992) Euler stability of the human ligamentous lumbar spine. Part II: experiment. Clin Biomech 7(1):27–32

    Article  CAS  Google Scholar 

  • Davis IS, Bowser BJ, Mullineaux DR (2016) Greater vertical impact loading in female runners with medically diagnosed injuries: a prospective investigation. Br J Sports Med 50(14):887–892

    Article  PubMed  Google Scholar 

  • Derrick TR, Hamill J, Caldwell GE (1998) Energy absorption of impacts during running at various stride lengths. Med Sci Sports Exerc 30(1):128–135

    Article  CAS  PubMed  Google Scholar 

  • du Rose A, Breen A (2016) Relationships between lumbar inter-vertebral motion and lordosis in healthy adult males: a cross sectional cohort study. BMC Musculoskelet Disord 17(1):121

    Article  PubMed  PubMed Central  Google Scholar 

  • Finley MA, Lee RY (2003) Effect of sitting posture on 3-dimensional scapular kinematics measured by skin-mounted electromagnetic tracking sensors. Arch Phys Med Rehabil 84(4):563–568

    Article  PubMed  Google Scholar 

  • Fox M (2013) Neandertal lumbopelvic anatomy and the biomechanical effects of a reduced lumbar lordosis. University of Cincinnati, Cincinnati, OH

    Google Scholar 

  • Giandolini M, Horvais N, Rossi J, Millet GY, Samozino P, Morin JB (2016) Foot strike pattern differently affects the axial and transverse components of shock acceleration and attenuation in downhill trail running. J Biomech 49(9):1765–1771

    Article  PubMed  Google Scholar 

  • Gómez-Olivencia A, Arlegi M, Barash A, Stock JT, Been E (2017) The Neandertal vertebral column 2: the lumbar spine. J Hum Evol 106:84–101

    Article  PubMed  Google Scholar 

  • Gong W (2015) The effects of cervical joint manipulation, based on passive motion analysis, on cervical lordosis, forward head posture, and cervical ROM in university students with abnormal posture of the cervical spine. J Phys Ther Sci 27(5):1609–1611

    Article  PubMed  PubMed Central  Google Scholar 

  • Gong W, Kim C, Lee Y (2012) Correlations between cervical lordosis, forward head posture, cervical ROM and the strength and endurance of the deep neck flexor muscles in college students. J Phys Ther Sci 24(3):275–277

    Article  Google Scholar 

  • Granito RN, Aveiro MC, Renno ACM, Oishi J, Driusso P (2012) Comparison of thoracic kyphosis degree, trunk muscle strength and joint position sense among healthy and osteoporotic elderly women: a cross-sectional preliminary study. Arch Gerontol Geriatr 54(2):e199–e202

    Article  PubMed  Google Scholar 

  • Grasso R, Zago M, Lacquaniti F (2000) Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture. J Neurophysiol 83(1):288–300

    Article  CAS  PubMed  Google Scholar 

  • Haeusler M, Schiess R, Boeni T (2011) New vertebral and rib material point to modern bauplan of the Nariokotome Homo erectus skeleton. J Hum Evol 61(5):575–582

    Article  PubMed  Google Scholar 

  • Heino JG, Godges JJ, Carter CL (1990) Relationship between hip extension range of motion and postural alignment. J Orthop Sports Phys Ther 12(6):243–247

    Article  CAS  PubMed  Google Scholar 

  • Hirose D, Ishida K, Nagano Y, Takahashi T, Yamamoto H (2004) Posture of the trunk in the sagittal plane is associated with gait in community-dwelling elderly population. Clin Biomech 19(1):57–63

    Article  Google Scholar 

  • Hongo M, Miyakoshi N, Shimada Y, Sinaki M (2012) Association of spinal curve deformity and back extensor strength in elderly women with osteoporosis in Japan and the United States. Osteoporos Int 23(3):1029–1034

    Article  CAS  PubMed  Google Scholar 

  • Hsu C, Castillo E, Lieberman D (2015) The relationship between trunk muscle strength and flexibility, intervertebral disc wedging, and human lumbar lordosis. The Harvard Undergraduate Research Journal 8:35–41

    Google Scholar 

  • Hutton W, Dhanendran M (1979) A study of the distribution of load under the normal foot during walking. Int Orthop 3(2):153–157

    CAS  PubMed  Google Scholar 

  • Izzo R, Guarnieri G, Guglielmi G, Muto M (2013) Biomechanics of the spine. Part I: spinal stability. Eur J Radiol 82(1):118–126

    Article  PubMed  Google Scholar 

  • Jang SY, Kong MH, Hymanson HJ, Jin TK, Song KY, Wang JC (2009) Radiographic parameters of segmental instability in lumbar spine using kinetic MRI. J Korean Neurosurg Soc 45(1):24–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Kapandji IA (1974) The physiology of the joints. Churchill Livingstone, Edinburg Scotland

    Google Scholar 

  • Kebaetse M, McClure P, Pratt NA (1999) Thoracic position effect on shoulder range of motion, strength, and three-dimensional scapular kinematics. Arch Phys Med Rehabil 80(8):945–950

    Article  CAS  PubMed  Google Scholar 

  • Kendall FP, McCreary EK, Provance PG, Rodgers M, Romani WA (2005) Muscles: testing and function, with posture and pain. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Kim HJ, Chung S, Kim S, Shin H, Lee J, Kim S, Song MY (2006) Influences of trunk muscles on lumbar lordosis and sacral angle. Eur Spine J 15(4):409–414

    Article  PubMed  Google Scholar 

  • Kirkaldy-Willis W (1985) Presidential symposium on instability of the lumbar spine: introduction. Spine 10(3):254

    Article  Google Scholar 

  • Kobayashi T, Takeda N, Atsuta Y, Matsuno T (2008) Flattening of sagittal spinal curvature as a predictor of vertebral fracture. Osteoporos Int 19(1):65–69

    Article  CAS  PubMed  Google Scholar 

  • Lewis JS, Green A, Wright C (2005) Subacromial impingement syndrome: the role of posture and muscle imbalance. J Shoulder Elb Surg 14(4):385–392

    Article  Google Scholar 

  • Mayoux-Benhamou M, Revel M, Vallee C, Roudier R, Barbet J, Bargy F (1994) Longus colli has a postural function on cervical curvature. Surg Radiol Anat 16(4):367–371

    Article  CAS  PubMed  Google Scholar 

  • McCowan T, Keith A (1939) The stone age of Mount Carmel. Oxford University Press, Oxford

    Google Scholar 

  • Meakin JR, Fulford J, Seymour R, Welsman JR, Knapp KM (2013) The relationship between sagittal curvature and extensor muscle volume in the lumbar spine. J Anat 222(6):608–614

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer MR (2005) Functional biology of the Homo erectus axial skeleton from Dmanisi, Georgia. University of Pennsylvania, Philadelphia, PA

    Google Scholar 

  • Meyer MR (2016) The cervical vertebrae of KSD-VP-1/1. The postcranial anatomy of Australopithecus afarensis. Springer, New York, pp 63–111

    Book  Google Scholar 

  • Meyer MR, Williams SA, Smith MP, Sawyer GJ (2015) Lucy’s back: reassessment of fossils associated with the AL 288-1 vertebral column. J Hum Evol 85:174–180

    Article  PubMed  Google Scholar 

  • Mika A, Unnithan VB, Mika P (2005) Differences in thoracic kyphosis and in back muscle strength in women with bone loss due to osteoporosis. Spine 30(2):241–246

    Article  PubMed  Google Scholar 

  • Miyakoshi N, Hongo M, Maekawa S, Ishikawa Y, Shimada Y, Okada K, Itoi E (2005) Factors related to spinal mobility in patients with postmenopausal osteoporosis. Osteoporos Int 16(12):1871–1874

    Article  PubMed  Google Scholar 

  • Miyazaki M, Hymanson HJ, Morishita Y, He W, Zhang H, Wu G, Kong MH, Tsumura H, Wang JC (2008) Kinematic analysis of the relationship between sagittal alignment and disc degeneration in the cervical spine. Spine 33(23):E870–E876

    Article  PubMed  Google Scholar 

  • Moroney SP, Schultz AB, Miller JA (1988) Analysis and measurement of neck loads. J Orthop Res 6(5):713–720

    Article  CAS  PubMed  Google Scholar 

  • Moustafa IM, Diab AAM, Hegazy FA, Harrison DE (2017) Does rehabilitation of cervical lordosis influence sagittal cervical spine flexion extension kinematics in cervical spondylotic radiculopathy subjects? J Back Musculoskelet Rehabil 30(4):937–941

    Article  PubMed  Google Scholar 

  • Nigg BM, Cole GK, Bruggemann GP (1995) Impact forces during heel toe running. J Appl Biomech 11(4):407–432

    Article  Google Scholar 

  • Oatis C (2004) Biomechanics of skeletal muscle. Kinesiology: the mechanics and pathomechanics of human movement, 2nd edn. Lippincott Williams & Wilkins, New York, pp 44–66

    Google Scholar 

  • Olson LE, Millar AL, Dunker J, Hicks J, Glanz D (2006) Reliability of a clinical test for deep cervical flexor endurance. J Manip Physiol Ther 29(2):134–138

    Article  Google Scholar 

  • Panjabi MM, Oda T, Crisco JJ III, Dvorak J, Grob D (1993) Posture affects motion coupling patterns of the upper cervical spine. J Orthop Res 11(4):525–536

    Article  CAS  PubMed  Google Scholar 

  • Patwardhan AG, Havey RM, Ghanayem AJ, Diener H, Meade KP, Dunlap B, Hodges SD (2000) Load-carrying capacity of the human cervical spine in compression is increased under a follower load. Spine 25(12):1548–1554

    Article  CAS  PubMed  Google Scholar 

  • Pavlova AV, Meakin JR, Cooper K, Barr RJ, Aspden RM (2018) Variation in lifting kinematics related to individual intrinsic lumbar curvature: an investigation in healthy adults. BMJ Open Sport Exerc Med 4(1):e000374

    Article  PubMed  PubMed Central  Google Scholar 

  • Pope MH, Panjabi M (1985) Biomechanical definitions of spinal instability. Spine 10(3):255–256

    Article  CAS  PubMed  Google Scholar 

  • Pozzo T, Berthoz A, Lefort L (1990) Head stabilization during various locomotor tasks in humans. I. Normal subjects. Exp Brain Res 82(1):97–106

    Article  CAS  PubMed  Google Scholar 

  • Pozzo T, Berthoz A, Vitte E, Lefort L (1991) Head stabilization during locomotion. Perturbations induced by vestibular disorders. Acta Otolaryngol Suppl 481:322–327

    Article  CAS  PubMed  Google Scholar 

  • Rak Y (1993) Morphological variation in Homo neanderthalensis and Homo sapiens in the Levant. In: Species, species concepts and primate evolution. Springer, New York, NY, pp 523–536

    Chapter  Google Scholar 

  • Rhodes JA, Churchill SE (2009) Throwing in the middle and upper Paleolithic: inferences from an analysis of humeral retroversion. J Hum Evol 56(1):1–10

    Article  PubMed  Google Scholar 

  • Ro H, Gong W, Ma S (2010) Correlations between and absolute rotation angle, anterior weight bearing, range of flexion and extension motion in cervical herniated nucleus pulposus. J Phys Ther Sci 22(4):447–450

    Article  Google Scholar 

  • Sanders WJ (1998) Comparative morphometric study of the australopithecine vertebral series Stw-H8/H41. J Hum Evol 34(3):249–302

    Article  CAS  PubMed  Google Scholar 

  • Sarwahi V, Boachie-Adjei O, Backus SI, Taira G (2002) Characterization of gait function in patients with postsurgical sagittal (flatback) deformity: a prospective study of 21 patients. Spine 27(21):2328–2337

    Article  PubMed  Google Scholar 

  • Schenkman M, Shipp KM, Chandler J, Studenski SA, Kuchibhatla M (1996) Relationships between mobility of axial structures and physical performance. Phys Ther 76(3):276–285

    Article  CAS  PubMed  Google Scholar 

  • Schiess R, Haeusler M (2013) No skeletal dysplasia in the nariokotome boy KNM-WT 15000 (Homo erectus)—a reassessment of congenital pathologies of the vertebral column. Am J Phys Anthropol 150(3):365–374

    Article  PubMed  Google Scholar 

  • Schmid S, Bruhin B, Ignasiak D, Romkes J, Taylor WR, Ferguson SJ, Brunner R, Lorenzetti S (2017) Spinal kinematics during gait in healthy individuals across different age groups. Hum Mov Sci 54:73–81

    Article  PubMed  Google Scholar 

  • Schmidt H, Kettler A, Rohlmann A, Claes L, Wilke H-J (2007) The risk of disc prolapses with complex loading in different degrees of disc degeneration–a finite element analysis. Clin Biomech 22(9):988–998

    Article  Google Scholar 

  • Sinaki M, Itoi E, Rogers JW, Bergstralh EJ, Wahner HW (1996) Correlation of Back extensor strength with thoracic kyphosis and lumbar lordosis in estrogen-deficient Women1. Am J Phys Med Rehabil 75(5):370–374

    Article  CAS  PubMed  Google Scholar 

  • Thigpen CA, Padua DA, Michener LA, Guskiewicz K, Giuliani C, Keener JD, Stergiou N (2010) Head and shoulder posture affect scapular mechanics and muscle activity in overhead tasks. J Electromyogr Kinesiol 20(4):701–709

    Article  PubMed  Google Scholar 

  • Trinkaus E (1975) Squatting among the Neandertals: a problem in the behavioral interpretation of skeletal morphology. J Archaeol Sci 2(4):327–351

    Article  Google Scholar 

  • Vergroesen P-P, Kingma I, Emanuel KS, Hoogendoorn RJ, Welting TJ, van Royen BJ, van Dieën JH, Smit TH (2015) Mechanics and biology in intervertebral disc degeneration: a vicious circle. Osteoarthr Cartil 23(7):1057–1070

    Article  Google Scholar 

  • Walker ML, Rothstein JM, Finucane SD, Lamb RL (1987) Relationships between lumbar lordosis, pelvic tilt, and abdominal muscle performance. Phys Ther 67(4):512–516

    Article  CAS  PubMed  Google Scholar 

  • Wang C-H, McClure P, Pratt NE, Nobilini R (1999) Stretching and strengthening exercises: their effect on three-dimensional scapular kinematics. Arch Phys Med Rehabil 80(8):923–929

    Article  CAS  PubMed  Google Scholar 

  • Whitcome KK, Shapiro LJ, Lieberman DE (2007) Fetal load and the evolution of lumbar lordosis in bipedal hominins. Nature 450(7172):1075

    Article  CAS  PubMed  Google Scholar 

  • Whittle MW (1999) Generation and attenuation of transient impulsive forces beneath the foot: a review. Gait Posture 10(3):264–275

    Article  CAS  PubMed  Google Scholar 

  • Whittle MW, Levine D (1999) Three-dimensional relationships between the movements of the pelvis and lumbar spine during normal gait. Hum Mov Sci 18(5):681–692

    Article  Google Scholar 

  • Wilke H-J, Wolf S, Claes LE, Arand M, Wiesend A (1995) Stability increase of the lumbar spine with different muscle groups. A biomechanical in vitro study. Spine 20(2):192–198

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Been, E., Bailey, J.F. (2019). The Association Between Spinal Posture and Spinal Biomechanics in Modern Humans: Implications for Extinct Hominins. In: Been, E., Gómez-Olivencia, A., Ann Kramer, P. (eds) Spinal Evolution. Springer, Cham. https://doi.org/10.1007/978-3-030-19349-2_12

Download citation

Publish with us

Policies and ethics