Skip to main content

Spatial and Temporal Variability of SPAS Attributes: Analysis of Spatial and Temporal Series

  • Chapter
  • First Online:
Soil, Plant and Atmosphere

Abstract

Spatial and temporal variability of the soil-plant-atmosphere system is an important tool for the statistical analysis of several sets of data collected in the field. The techniques here seen allow the scientist to reveal characteristics of systems that cannot be analyzed by classical statistics methods. Various tools are presented, like the cross-correlogram, calculation of number of samples to be collected, spectral analysis, wavelets, and spectra. An introduction to multivariate analysis (wavelet analysis and multivariate empirical mode decomposition method) is given. A very extended analysis is made of the state-space methodology, introducing the matrix of coefficients and the matrix of observations. The Kalman Filter is also demonstrated in the context of the state-space analysis. Two approaches used in the state-space analysis are shown in detail with several practical examples: Shumway’s approach and West and Harrison’s approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addison PS (2017) The illustrated wavelet transform handbook: introduction, theory and applications in science, engineering, medicine and finance, 2nd edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Alemi MH, Shahriari MR, Nielsen DR (1988) Kriging and cokriging of soil water properties. Soil Technol 1:117–132

    Article  Google Scholar 

  • Ameen JRM, Harrison PJ (1984) Discount weighted estimation. J Forec 3:285–296

    Article  Google Scholar 

  • Aquino LS, Timm LC, Reichardt K, Barbosa EP, Parfitt JMB, Nebel ALC, Penning LH (2015) State-space approach to evaluate effects of land levelling on the spatial relationships of soil properties of a lowland area. Soil Tillage Res 145:135–147

    Article  Google Scholar 

  • Awe GO, Reichert JM, Timm LC, Wendroth O (2015) Temporal processes of soil water status in a sugarcane field under residue management. Plant and Soil 387:395–411

    Article  CAS  Google Scholar 

  • Bazza M, Shumway RH, Nielsen DR (1988) Two-dimensional spectral analyses of soil surface temperature. Hilgardia 56:1–28

    Article  Google Scholar 

  • Beskow S, Timm LC, Tavares VEQ, Caldeira TL, Aquino LS (2016) Potential of the LASH model for water resources management in data-scarce basins: a case study of the Fragata river basin, southern Brazil. Hydrol Sci J 61:2567–2578

    Article  Google Scholar 

  • Biswas A (2018) Scale–location specific soil spatial variability: a comparison of continuous wavelet transform and Hilbert–Huang transform. Catena 160:24–31

    Article  Google Scholar 

  • Biswas A, Si BC (2011) Application of continuous wavelet transform in examining soil spatial variation: a review. Math Geosci 43:379–396

    Article  Google Scholar 

  • Bremner JM (1960) Determination of nitrogen in soil by the Kjeldahl method. J Agric Sci 55:11–33

    Article  CAS  Google Scholar 

  • Brillinger DR (2001) Time series: data analysis and theory. Society for Industrial and Applied Mathematics, Philadelphia, PA

    Book  Google Scholar 

  • Chatfield C (2004) The analysis of time series: an introduction, 6th edn. Chapman & Hall/CRC, Boca Raton, FL

    Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Statist Soc Ser B 39:1–38

    Google Scholar 

  • Deutsch CV, Journel AG (1992) GSLIB. Geostatistical software library and user’s guide. Oxford University Press, New York, NY

    Google Scholar 

  • Dourado-Neto D, Timm LC, Oliveira JCM, Reichardt K, Bacchi OOS, Tominaga TT, Cassaro FAM (1999) State-space approach for the analysis of soil water content and temperature in a sugarcane crop. Sci Agric 56:1215–1221

    Article  Google Scholar 

  • Farge M (1992) Wavelet transforms and their applications to turbulence. Annu Rev Fluid Mech 24:395–457

    Article  Google Scholar 

  • Flandrin P (2018) Explorations in time-frequency analysis. Cambridge University Press, Padstow Cornwall

    Book  Google Scholar 

  • Gelb A (1974) Applied optimal estimation. Massachusetts Institute of Technology Press, Cambridge, MA

    Google Scholar 

  • Graps A (1995) An introduction to wavelets. IEEE Comp Sci Eng 2:50–61

    Article  Google Scholar 

  • Grinsted A, Moore JC, Jevrejeva S (2004) Application of cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes Geophys 11:561–566

    Article  Google Scholar 

  • Harrison PJ, Stevens CF (1976) Bayesian forecasting (with discussion). J R Statist Soc Ser B 38:205–267

    Google Scholar 

  • Hu W, Si BC (2013) Soil water prediction based on its scale-specific control using multivariate empirical mode decomposition. Geoderma 193-194:180–188

    Article  Google Scholar 

  • Hu W, Si BC (2016a) Multiple wavelet coherence for untangling scale-specific and localized multivariate relationships in geosciences. Hydrol Earth Syst Sci 20:3183–3191

    Article  Google Scholar 

  • Hu W, Si BC (2016b) Multiple wavelet coherence for untangling scale-specific and localized multivariate relationships in geosciences. Suppl Hydrol Earth Syst Sci 20:3183–3191

    Article  Google Scholar 

  • Huang NE, Shen Z, Long SR, Wu MLC, Shih HH, Zheng QN, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser AA 454:903–995

    Article  Google Scholar 

  • Hubbard BB (1998) The world according to wavelets: the story of a mathematical technique in the making, 2nd edn. A K Peters Ltd, Natick, MA

    Book  Google Scholar 

  • Hui S, Wendroth O, Parlange MB, Nielsen DR (1998) Soil variability – infiltration relationships of agroecosystems. J Balkan Ecol 1:21–40

    Google Scholar 

  • James JF (2011) A student’s guide to Fourier transforms with applications in physics and engineering, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kalman RE (1960) A new approach to linear filtering and prediction theory. Trans ASME J Basic Eng 8:35–45

    Article  Google Scholar 

  • Katul GG, Wendroth O, Parlange MB, Puente CE, Folegatti MV, Nielsen DR (1993) Estimation of in situ hydraulic conductivity function from nonlinear filtering theory. Water Resour Res 29:1063–1070

    Article  Google Scholar 

  • Liu ZP, Shao MA, Wang YQ (2012) Estimating soil organic carbon across a large-scale region: a state-space modeling approach. Soil Sci 177:607–618

    Article  CAS  Google Scholar 

  • McGraw T (1994) Soil test level variability in Southern Minnesota. Better Crops Pot Phosp Inst 78:24–25

    Google Scholar 

  • Nielsen DR, Alemi MH (1989) Statistical opportunities for analyzing spatial and temporal heterogeneity of field soils. Plant and Soil 115:285–296

    Article  Google Scholar 

  • Nielsen DR, Wendroth O (2003) Spatial and temporal statistics – sampling field soils and their vegetation. Catena Verlag, Cremlingen-Desdedt

    Google Scholar 

  • Ogunwole JO, Timm LC, Ugwu-Obidike EO, Gabriels DM (2014a) State-space estimation of soil organic carbon stock. Int Agroph 28:185–194

    Article  CAS  Google Scholar 

  • Ogunwole JO, Obidike EO, Timm LC, Odunze AC, Gabriels DM (2014b) Assessment of spatial distribution of selected soil properties using geospatial statistical tools. Commun Soil Sci Plant Anal 45:2182–2200

    Article  CAS  Google Scholar 

  • Plackett RL (1950) Some theorems in least squares. Biometrika 37:149–157

    Article  CAS  PubMed  Google Scholar 

  • Pole A, West M, Harrison J (1994) Applied Bayesian forecasting and time series analysis. Chapman & Hall, London

    Book  Google Scholar 

  • Rehman N, Mandic DP (2009) Empirical mode decomposition. Matlab code and data. http://www.commsp.ee.ic.ac.uk/~mandic/research/emd.htm.

    Google Scholar 

  • Rehman N, Mandic DP (2010) Multivariate empirical mode decomposition. Proc R Soc A 466:1291–1302

    Article  Google Scholar 

  • She DL, Liu DD, Peng SZ, Shao MA (2013) Multiscale influences of soil properties on soil water content distribution in a watershed on the Chinese Loess Plateau. Soil Sci 178:530–539

    Article  CAS  Google Scholar 

  • She DL, Tang SQ, Shao MA, Yu SE, Xia YQ (2014a) Characterizing scale specific depth persistence of soil water content along two landscape transects. J Hydrol 519:1149–1161

    Article  Google Scholar 

  • She DL, Xuemei G, Jingru S, Timm LC, Hu W (2014b) Soil organic carbon estimation with topographic properties in artificial grassland using a state-space modeling approach. Can J Soil Sci 94:503–514

    Article  CAS  Google Scholar 

  • She DL, Zheng JX, Shao MA, Timm LC, Xia YQ (2015) Multivariate empirical mode decomposition derived multi-scale spatial relationships between saturated hydraulic conductivity and basic soil properties. Clean Soil Air Water 43:910–918

    Article  CAS  Google Scholar 

  • She DL, Fei YH, Chen Q, Timm LC (2016) Spatial scaling of soil salinity indices along a temporal coastal reclamation area transect in China using wavelet analysis. Arch Agron Soil Sci 62:1625–1639

    Article  CAS  Google Scholar 

  • She DL, Qiana C, Timm LC, Beskow S, Hu W, Caldeira TL, Oliveira LM (2017) Multi-scale correlations between soil hydraulic properties and associated factors along a Brazilian watershed transect. Geoderma 286:15–24

    Article  Google Scholar 

  • Shumway RH (1988) Applied statistical time series analyses. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Shumway RH, Stoffer DS (1982) An approach to time series smoothing and forecasting using the EM algorithm. J Time Ser Anal 3:253–264

    Article  Google Scholar 

  • Shumway RH, Stoffer DS (2000) Time series analysis and its applications. Springer, New York, NY

    Book  Google Scholar 

  • Shumway RH, Stoffer DS (2011) Time series analysis and its applications with R examples, 3rd edn. Springer, New York, NY

    Book  Google Scholar 

  • Shumway RH, Stoffer DS (2017) Time series analysis and its applications with R examples, 4th edn. Springer, New York, NY

    Book  Google Scholar 

  • Shumway RH, Biggar JW, Morkoc F, Bazza M, Nielsen DR (1989) Time-and frequency-domain analyses of field observations. Soil Sci 147:286–298

    Article  Google Scholar 

  • Si BC (2008) Spatial scaling analyses of soil physical properties: a review of spectral and wavelet methods. Vadose Zone J 7:547–562

    Article  Google Scholar 

  • Si BC, Zeleke TB (2005) Wavelet coherency analysis to relate saturated hydraulic properties to soil physical properties. Water Resour Res 41:W11424

    Article  Google Scholar 

  • Stevenson FC, Knight JD, Wendroth O, Van Kessel C, Nielsen DR (2001) A comparison of two methods to predict the landscape-scale variation of crop yield. Soil Tillage Res 58:163–181

    Article  Google Scholar 

  • Timm LC, Fante Júnior L, Barbosa EP, Reichardt K, Bacchi OOS (2000) Interação solo-planta avaliada por modelagem estatística de espaço de estados. Sci Agric 57:751–760

    Article  Google Scholar 

  • Timm LC, Reichardt K, Oliveira JCM, Cassaro FAM, Tominaga TT, Bacchi OOS, Dourado-Neto D, Nielsen DR (2001) State-space approach to evaluate the relation between soil physical and chemical properties. Czech Society of Soil Science and Soil Science Society of America, Prague

    Google Scholar 

  • Timm LC, Reichardt K, Oliveira JCM, Cassaro FAM, Tominaga TT, Bacchi OOS, Dourado-Neto D (2003a) Sugarcane production evaluated by the state–space approach. J Hydrol 272:226–237

    Article  CAS  Google Scholar 

  • Timm LC, Barbosa EP, Souza MD, Dynia JF, Reichardt K (2003b) State-space analysis of soil data: an approach based on space-varying regression models. Sci Agric 60:371–376

    Article  Google Scholar 

  • Timm LC, Reichardt K, Oliveira JCM, Cassaro FAM, Tominaga TT, Bacchi OOS, Dourado-Neto D (2003c) State-space approach for evaluating the soil–plant–atmosphere system. In: Achyuthan H (ed) Soil and soil physics in continental environment. Allied Publishers Private Limited, Chennai, pp 23–81

    Google Scholar 

  • Timm LC, Reichardt K, Oliveira JCM, Cassaro FAM, Tominaga TT, Bacchi OOS, Dourado-Neto D, Nielsen DR (2004) State-space approach to evaluate the relation between soil physical and chemical properties. Braz J Soil Sci 28:49–58

    CAS  Google Scholar 

  • Timm LC, Pires LF, Roveratti R, Arthur RCJ, Reichardt K, Oliveira JCM, Bacchi OOS (2006a) Field spatial and temporal patterns of soil water content and bulk density changes. Sci Agric 63:55–64

    Article  Google Scholar 

  • Timm LC, Gomes DT, Barbosa EP, Reichardt K, Souza MD, Dynia JF (2006b) Neural network and state-space models for studying relationships among soil properties. Sci Agric 63:386–395

    Article  CAS  Google Scholar 

  • Timm LC, Dourado-Neto D, Bacchi OOS, Hu W, Bortolotto RP, Silva AL, Bruno IP, Reichardt K (2011) Temporal variability of soil water storage evaluated for a coffee field. Aust J Soil Res 49:77–86

    Article  Google Scholar 

  • Timm LC, Reichardt K, Lima CLR, Aquino LA, Penning LH, Dourado-Neto D (2014) State-space approach to understand Soil-Plant-Atmosphere relationships. In: Teixeira WG, Ceddia MB, Ottoni MV, Donnagema GK (eds) Application of soil physics in environmental analysis: measuring, modelling and data integration. Springer, New York, NY, pp 91–129

    Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • Tukey JW (1980) Can we predict where ‘Time Series’ should go next? In: Brillinger DR, Tiao GC (eds) Directions in time series. Institute of Mathematical Statistics, Hayward, CA, pp 1–31

    Google Scholar 

  • Walkey A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter and a proposed modifications of the chromic acid titration method. Soil Sci 37:29–38

    Article  Google Scholar 

  • Warrick AW, Nielsen DR (1980) Spatial variability of soil physical properties in the field. In: Hillel D (ed) Applications of soil physics. Academic Press, New York, NY, pp 319–344

    Chapter  Google Scholar 

  • Wendroth O (2013) Soil variability. In: Lazarovitch N, Warrick AW (eds) Exercises in soil physics. Catena Verlag, Reiskirchen, pp 292–332

    Google Scholar 

  • Wendroth O, Al Omran AM, Kirda K, Reichardt K, Nielsen DR (1992) State-space approach to spatial variability of crop yield. Soil Sci Soc Am J 56:801–807

    Article  Google Scholar 

  • Wendroth O, Katul GG, Parlange MB, Puente CE, Nielsen DR (1993) A nonlinear filtering approach for determining hydraulic conductivity functions. Soil Sci 156:293–301

    Article  Google Scholar 

  • Wendroth O, Reynolds WD, Vieira SR, Reichardt K, Wirth S (1997) Statistical approaches to the analysis of soil quality data. In: Gregorich EG, Carter MR (eds) Soil quality for crop production and ecosystem health. Elsevier Science, Amsterdam, pp 247–276

    Chapter  Google Scholar 

  • Wendroth O, Jürschik P, Giebel A, Nielsen DR (1998) Spatial statistical analysis of on-site-crop yield and soil observations for site-specific management. In: International Conference on Precision Agriculture. American Society of Agronomy/Crop Science Society of America/Soil Science Society of America, Saint Paul, MN, pp 159–170

    Google Scholar 

  • Wendroth O, Jürschik P, Kersebaum KC, Reuter H, Van Kessel C, Nielsen DR (2001) Identifying, understanding, and describing spatial processes in agricultural landscapes – four case studies. Soil Tillage Res 58:113–127

    Article  Google Scholar 

  • Wendroth O, Koszinski S, Vasquez V (2011) Soil spatial variability. In: Huang PM, Li Y, Sumner ME (eds) Handbook of soil science, 2nd edn. CRC Press, Boca Raton, FL, pp 10.1–10.25

    Google Scholar 

  • Wendroth O, Yang Y, Timm LC (2014) State-space analysis in soil physics. In: Teixeira WG, Ceddia MB, Ottoni MV, Donnagema GK (eds) Application of soil physics in environmental analysis: measuring, modelling and data integration. Springer, New York, NY, pp 53–74

    Google Scholar 

  • West M, Harrison J (1989) Bayesian forecasting and dynamic models, 1st edn. Springer, London

    Book  Google Scholar 

  • West M, Harrison J (1997) Bayesian forecasting and dynamic models, 2nd edn. Springer, London

    Google Scholar 

  • Yang Y, Wendroth O (2014) State-space approach to field-scale bromide leaching. Geoderma 217-218:161–172

    Article  CAS  Google Scholar 

  • Yang Y, Wendroth O, Walton RJ (2013) Field-scale bromide leaching as affected by land use and rain characteristics. Soil Sci Soc Am J 77:1157–1167

    Article  CAS  Google Scholar 

  • Yang Y, Wendroth O, Walton RJ (2016) Temporal dynamics and stability of spatial soil matric potential in two land use systems. Vadose Zone J 15:1–15

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reichardt, K., Timm, L.C. (2020). Spatial and Temporal Variability of SPAS Attributes: Analysis of Spatial and Temporal Series. In: Soil, Plant and Atmosphere. Springer, Cham. https://doi.org/10.1007/978-3-030-19322-5_18

Download citation

Publish with us

Policies and ethics