Skip to main content

How Soil, Plant, and Atmosphere Properties Vary in Space and Time in the SPAS: An Approach to Geostatistics

  • Chapter
  • First Online:
Book cover Soil, Plant and Atmosphere

Abstract

Spatial and temporal variability of attributes of the soil–plant–atmosphere system is analyzed in this chapter based on the classical statistics of Fisher and on geostatistics. Several specific concepts are introduced, like the sampling transects or grids. It is shown that the classical statistics and geostatistics complement each other. Mean or average, variance, standard deviation, quartiles, and moments of sampled populations are introduced in detail. Outliers of a set of collected data are defined and the criteria to eliminate them are presented. An introduction to the box plots technique, the normal frequency distribution, the lognormal distribution, covariance, autocorrelation, and semivariograms is also given. Finally, the concepts of kriging, pedotransfer functions, and neural networks are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahuja LR, Naney JW, Williams RD (1985) Estimating soil water characteristics from simpler properties or limited data. Soil Sci Soc Am J 49:1100–1105

    Article  Google Scholar 

  • Arruda FB, Zullo Junior J, Oliveira JB (1987) Parâmetros de solo para o cálculo da água disponível com base na textura do solo. Rev Bras Ciênc Solo 11:11–15

    Google Scholar 

  • Arya LM, Paris JF (1981) A physico-empirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Sci Soc Am J 45:1023–1030

    Article  Google Scholar 

  • Barros AHC, De Jong van Lier Q (2014) Pedotransfer functions for Brazilian soils. In: Teixeira WG, Ceddia MB, Ottoni MV, Donnagema GK (eds) Application of soil physics in environmental analysis: measuring, modeling and data integration. Springer, New York, NY, pp 131–162

    Google Scholar 

  • Baxt WG (1991) Use of an artificial neural network for the diagnosis of myocardial infarction. Ann Intern Med 115:843–848

    Article  CAS  PubMed  Google Scholar 

  • Bitencourt DGB, Timm LC, Guimarães EC, Pinto LFS, Pauletto EA, Penning LH (2015) Spatial variability structure of the surface layer attributes of Gleysols from the Coastal Plain of Rio Grande do Sul. Biosci J 31:1711–1721

    Article  Google Scholar 

  • Bloemen GW (1980) Calculation of hydraulic conductivities from texture and organic matter content. Z Pflanz Bod 143:581–605

    Article  Google Scholar 

  • Botula YD, Van Ranst E, Cornelis WM (2014) Pedotransfer functions to predict water retention for soils of the humid tropics: a review. Braz J Soil Sci 38:679–698

    Google Scholar 

  • Bouma J (1989) Using soil survey data for quantitative land evaluation. Adv Soil Sci 9:177–213

    Article  Google Scholar 

  • Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Colorado State University, Fort Collins, CO, pp 1–27

    Google Scholar 

  • Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, Konopka AE (1994) Field-scale variability of soil properties in Central Iowa soils. Soil Sci Soc Am J 58:1501–1511

    Article  Google Scholar 

  • Carroll ZL, Oliver MA (2005) Exploring the spatial relations between soil physical properties and apparent electrical conductivity. Geoderma 128:354–374

    Article  Google Scholar 

  • Cassalho F, Beskow S, Mello CR, Moura MM, Kerstner L, Ávila LF (2018) At-site flood frequency analysis coupled with multiparameter probability distributions. Water Resour Manag 32:285–300

    Article  Google Scholar 

  • Clark I (1979) Practical geostatistics. Applied Science Publications, London

    Google Scholar 

  • Cornelis WM, Ronsyn J, Van Meirvenne M, Hartmann R (2001) Evaluation of pedotransfer functions for predicting the soil moisture retention curve. Soil Sci Soc Am J 65:638–648

    Article  CAS  Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. John Wiley & Sons Inc., New York, NY

    Book  Google Scholar 

  • Cressie NAC, Hawkins DM (1980) Robust estimation of the variogram: I. Math Geol 12:115–125

    Article  Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology, 2nd edn. John Wiley & Sons Inc., New York, NY

    Google Scholar 

  • Duda RO, Hart PE (1973) Pattern classification and scene analysis. John Wiley & Sons Inc., New York, NY

    Google Scholar 

  • Eriksson M, Siska P (2000) Understanding anisotropy computations. Math Geol 326:683–700

    Article  Google Scholar 

  • Flury B, Riedwyl H (1990) Multivariate statistics: a practical approach. Chapman & Hall, London

    Google Scholar 

  • Fujita H, Katafuchi T, Uehara T, Nishimura T (1992) Application of artificial neural network to computer aided diagnosis of coronary artery disease in myocardial spect bull’s-eye images. J Nucl Med 33:272–276

    CAS  PubMed  Google Scholar 

  • Giarola NFB, Silva AP, Imhoff S (2002) Relações entre propriedades físicas e características de solos da região sul do Brasil. Rev Bras Ciênc Solo 26:885–893

    Article  CAS  Google Scholar 

  • Glaz B, Yeater KM (eds) (2018) Applied statistics in agricultural, biological, and environmental sciences. Am Soc Agron, Soil Sci Soc Am, Crop Sci Soc Am, Madison, WI

    Google Scholar 

  • Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press Inc., New York, NY

    Google Scholar 

  • Goovaerts P (1999) Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89:1–45

    Article  Google Scholar 

  • Gorman RP, Sejnowski TJ (1988) Analysis of hidden units in a layered network to classify sonar targets. Neural Netw 1:75–89

    Article  Google Scholar 

  • Gringarten E, Deutsch CV (2001) Teacher’s aide, variogram interpretation and modeling. Math Geol 33:507–534

    Article  Google Scholar 

  • Guan Y, Sherman M, Calvin JA (2004) A nonparametric test for spatial isotropy using subsampling. J Am Stat Assoc 99:810–821

    Article  Google Scholar 

  • Guedes LPC, Uribe-Opazo MA, Johann JA, Souza EG (2008) Anisotropia no estudo da variabilidade espacial de algumas variáveis químicas do solo. Rev Bras Ciênc Solo 32:2217–2226

    Article  CAS  Google Scholar 

  • Guedes LPC, Uribe-Opazo MA, Ribeiro Junior PJ (2013) Influence of incorporating geometric anisotropy on the construction of thematic maps of simulated data and chemical attributes of soil. Chil J Agric Res 73:414–423

    Article  Google Scholar 

  • Gupta SC, Larson WE (1979) Estimating soil water characteristic from particle size distribution, organic matter percent, and bulk density. Water Resour Res 15:1633–1635

    Article  Google Scholar 

  • Gusella V (1991) Estimation of extreme winds from short-term records. J Struct Eng 117:375–390

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2016) The elements of statistical learning: data, mining, inference, and prediction, 2nd edn. Springer, New York, NY

    Google Scholar 

  • Haykin S (1999) Neural networks – a comprehensive foundation, 2nd edn. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Hodnett MG, Tomasella J (2002) Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: a new water-retention pedotransfer function developed for tropical soils. Geoderma 108:155–180

    Article  CAS  Google Scholar 

  • Hui S, Wendroth O, Parlange MB, Nielsen DR (1998) Soil variability – infiltration relationships of agroecosystems. J Balkan Ecol 1:21–40

    Google Scholar 

  • Hutchinson JM (1994) A radial basis function approach to financial time series analysis. PhD Dissertation, Massachusetts Institute of Technology, Massachusetts

    Google Scholar 

  • Imam B, Sorooshian S, Mayr T, Schaap MG, Wösten JHM, Scholes RJ (1999) Comparison of pedotransfer functions to compute water holding capacity using the van Genuchten model in inorganic soils. IGBP-DIS Report, Toulouse

    Google Scholar 

  • Isaaks EH, Srivastava RM (1989) Applied geostatistics. Oxford University Press, New York, NY

    Google Scholar 

  • Janik LJ, Skjemstad JO, Raven MD (1995) Characterization and analysis of soils using midinfrared partial least squares. I. Correlations with XRF-determined major element composition. Aust J Soil Res 33:621–636

    Article  CAS  Google Scholar 

  • Jeffrey A (2010) Matrix operations for engineers and scientists: an essential guide in linear algebra. Springer, New York, NY

    Book  Google Scholar 

  • Journel AG, Huijbregts CHJ (1978) Mining geoestatistics. Academic Press Inc., New York, NY

    Google Scholar 

  • Journel AG, Rao SE (1996) Deriving conditional distributions from ordinary kriging. Stanford Center for Reservoir Forecasting, Stanford, CA

    Google Scholar 

  • Jury WA, Horton R (2004) Soil physics, 6th edn. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  • Kern JS (1995) Evaluation of soil water retention models based on basic soil physical properties. Soil Sci Soc Am J 59:1134–1141

    Article  CAS  Google Scholar 

  • Leij FJ, Schaap MG, Arya MP (2002) Indirect methods. In: Dane JH, Topp GC (eds) Methods of soil analysis: Part 4, Physical methods, 3rd edn. Soil Science Society of Agronomy, Madison, WI, pp 1009–1045

    Google Scholar 

  • Lippmann RP (1989) Review of neural networks for speech recognition. Neural Comput 1:1–38

    Article  Google Scholar 

  • Marques RFPV, Mello CR, Silva AM, Franco CS, Oliveira AS (2014) Performance of the probability distribution models applied to heavy rainfall daily events. Cienc Agrotec 38:335–342

    Article  Google Scholar 

  • Matheron G (1963) Principles of geostatistics. Econ Geol 58:1246–1266

    Article  CAS  Google Scholar 

  • McBratney AB, Minasny B, Cattle SR, Vervoort RW (2002) From pedotransfer functions to soil inference systems. Geoderma 109:41–73

    Article  Google Scholar 

  • Minasny B, McBratney AB, Mendonça-Santos ML, Santos HG (2003) Revisão sobre funções de pedotransferência (PTFs) e novos métodos de predição de classes e atributos do solo. Embrapa Solos, Rio de Janeiro

    Google Scholar 

  • Montgomery DC, Runger GC (1994) Applied statistics and probability for engineers. John Wiley & Sons Inc., Crawfordsville, IN

    Google Scholar 

  • Murshed MS, Seob YA, Parkc J-S, Lee Y (2018) Use of beta-P distribution for modeling hydrologic events. Commun Statist Appl Meth 25:15–27

    Article  Google Scholar 

  • Nebel ALC, Timm LC, Cornelis WM, Gabriels D, Reichardt K, Aquino LS, Pauletto EA, Reinert DJ (2010) Pedotransfer functions related to spatial variability of water retention attributes for lowland soils. Braz J Soil Sci 34:669–680

    Google Scholar 

  • Nemes A, Schaap MG, Wösten JHM (2003) Functional evaluation of pedotransfer functions derived from different scales of data collection. Soil Sci Soc Am J 67:1093–1102

    Article  CAS  Google Scholar 

  • Neter J, Wasserman W, Kutner MH (1990) Applied linear statistical models, 3rd edn. Richard D. Irwin, Homewood, IL

    Google Scholar 

  • Nielsen DR, Wendroth O (2003) Spatial and temporal statistics – sampling field soils and their vegetation. Catena Verlag, Cremlingen-Desdedt

    Google Scholar 

  • Oliveira LB, Ribeiro MR, Jacomine PKT, Rodrigues JVV, Marques FA (2002) Funções de Pedotransferência para predição da umidade retida a potenciais específicos em solos do Estado de Pernambuco. Rev Bras Ciênc Solo 26:315–323

    Article  Google Scholar 

  • Pachepsky YA, Rawls WJ (eds) (2004) Development of pedotransfer functions in soil hydrology. Elsevier, Amsterdam

    Google Scholar 

  • Pachepsky Y, Timlin D, Varallyay G (1996) Artificial neural networks to estimate soil water retention from easily measurable data. Soil Sci Soc Am J 60:727–733

    Article  CAS  Google Scholar 

  • Pachepsky YA, Timlin DJ, Ahuja LR (1999a) The current status of pedotransfer functions: their accuracy, reliability and utility in field and regional scale modeling. In: Corwin DL, Loage K, Ells-Worth TR (eds) Assessment of non-point source pollution in vadose zone. American Geophysical Union, Washington, DC, pp 223–234

    Chapter  Google Scholar 

  • Pachepsky YA, Timlin DJ, Ahuja LR (1999b) Estimated saturated soil hydraulic conductivity using water retention data and neural networks. Soil Sci 164:552–560

    Article  CAS  Google Scholar 

  • Pachepsky YA, Rawls WJ, Lin HS (2006) Hydropedology and pedotransfer functions. Geoderma 131:308–316

    Article  Google Scholar 

  • Parfitt JMB, Timm LC, Pauletto EA, Sousa RO, Castilhos DD, Ávila CL, Reckziegel NL (2009) Spatial variability of the chemical, physical and biological properties in lowland cultivated with irrigated rice. Braz J Soil Sci 33:819–830

    CAS  Google Scholar 

  • Parfitt JMB, Timm LC, Reichardt K, Pinto LFS, Pauletto EA, Castilhos DD (2013) Chemical and biological attributes of a lowland soil affected by land leveling. Pesq Agropec Bras 48:1489–1497

    Article  Google Scholar 

  • Parfitt JMB, Timm LC, Reichardt K, Pauletto EA (2014) Impacts of land levelling on lowland soil physical properties. Braz J Soil Sci 38:315–326

    CAS  Google Scholar 

  • Radcliffe DE, Simunek J (2010) Soil physics with Hydrus: modeling and applications. CRC Press Taylor & Francis Group, Boca Raton, FL

    Google Scholar 

  • Rawls WJ, Brakensiek DL, Saxton KE (1982) Estimation of soil water properties. Trans ASAE 25:1316–1320

    Article  Google Scholar 

  • Rawls WJ, Gish TJ, Brakensiek DL (1991) Estimating soil water retention from soil physical properties and characteristics. Adv Soil Sci 16:213–234

    Article  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org

  • Reichardt K, Vieira SR, Libardi PL (1986) Variabilidade espacial de solos e experimentação de campo. Rev Bras Ciênc Solo 10:1–6

    Google Scholar 

  • Robertson GP (2008) GS: geostatistics for the environmental sciences. Gamma Design Software, Plainwell, MI

    Google Scholar 

  • Schaap MG, Bouten W (1996) Modeling water retention curves of sandy soils using neural networks. Water Resour Res 32:3033–3040

    Article  CAS  Google Scholar 

  • Schaap MG, Leij FJ, Van Genuchten MT (1998) Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Sci Soc Am J 62:847–855

    Article  CAS  Google Scholar 

  • Schaap MG, Leij FJ, Van Genuchten MT (2001) ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251:163–176

    Article  Google Scholar 

  • Shumway RH (1988) Applied statistical time series analyses. Prentice Halll, Englewood Cliffs, NJ

    Google Scholar 

  • Shumway RH, Stoffer DS (2017) Time series analysis and its applications with R examples, 4th edn. Springer, New York, NY

    Book  Google Scholar 

  • Si BC (2008) Spatial scaling analyses of soil physical properties: a review of spectral and wavelet methods. Vadose Zone J 7:547–562

    Article  Google Scholar 

  • Silva AP, Tormena CA, Fidalski J, Imhoff S (2008) Funções de pedotransferência para as curvas de retenção de água e de resistência do solo à penetração. Rev Bras Ciênc Solo 32:1–10

    Article  Google Scholar 

  • Silva AC, Armindo RA, Brito AS, Schaap MG (2017) An assessment of pedotransfer function performance for the estimation of spatial variability of key soil hydraulic properties. Vadose Zone J 16:1–10

    Article  CAS  Google Scholar 

  • Studenmund AH (1992) Using econometrics: a practical guide. Harper Collins, New York, NY

    Google Scholar 

  • Tamari S, Wösten JHM, Ruiz-Suárez JC (1996) Testing an artificial neural network for predicting soil hydraulic conductivity. Soil Sci Soc Am J 60:771–774

    Article  Google Scholar 

  • Tietje O, Hennings V (1996) Accuracy of the saturated hydraulic conductivity prediction by pedotransfer functions compared to the variability within FAO textural classes. Geoderma 69:71–84

    Article  Google Scholar 

  • Tietje O, Tapkenhinrichs M (1993) Evaluation of pedotransfer functions. Soil Sci Soc Am J 57:1088–1095

    Article  Google Scholar 

  • Timm LC, Gomes DT, Barbosa EP, Reichardt K, Souza MD, Dynia JF (2006) Neural network and state-space models for studying relationships among soil properties. Sci Agric 63:386–395

    Article  CAS  Google Scholar 

  • Tomasella J, Hodnett MG (1998) Estimating soil water characteristics from limited data in Brazilian Amazonia. Soil Sci 163:190–202

    Article  CAS  Google Scholar 

  • Tomasella J, Hodnett MG (2004) Pedotransfer functions for tropical soils. In: Pachepsky YA, Rawls WJ (eds) Development of pedotransfer functions in soil hydrology. Elsevier, Amsterdam, pp 415–430

    Chapter  Google Scholar 

  • Tomasella J, Hodnett MG, Rossato L (2000) Pedotransfer functions for the estimation of soil water retention in Brazilian soils. Soil Sci Soc Am J 64:327–338

    Article  CAS  Google Scholar 

  • Trangmar BB, Yost RS, Uehara G (1985) Application of geostatistics to spatial studies of soil properties. Adv Agron 38:45–93

    Article  Google Scholar 

  • Van Den Berg M, Klamt E, Van Reeuwijk LP, Sombroek WG (1997) Pedotransfer functions for the estimation of moisture retention characteristics of Ferralsols and related soils. Geoderma 78:161–180

    Article  Google Scholar 

  • Van Genuchten MT (1980) A closed-form equation for predicting the conductivity of un-saturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  • Van Looy K, Bouma J, Herbst M et al (2017) Pedotransfer functions in Earth system science: challenges and perspectives. Rev Geophys 55:1199–1256

    Article  Google Scholar 

  • Vereecken H, Weynants M, Javaux M, Pachepsky Y, Schaap MG, Van Genuchten MT (2010) Using pedotransfer functions to estimate the van Genuchten–Mualem soil hydraulic properties: a review. Vadose Zone J 9:795–820

    Article  Google Scholar 

  • Vieira SR, Hatfield JL, Nielsen DR, Biggar JW (1983) Geostatistical theory and application to variability of some agronomical properties. Hilgardia 51:1–75

    Article  Google Scholar 

  • Vieira SR, Tillotson PM, Biggar JW, Nielsen DR (1997) Scaling of semivariograms and the kriging estimation of field-measured properties. Braz J Soil Sci 21:525–533

    Google Scholar 

  • Vieira SR, Grego CR, Topp GC, Reynolds WD (2014) Spatial relationships between soil water content and hydraulic conductivity in a highly structured clay soils. In: Teixeira WG, Ceddia MB, Ottoni MV, Donnagema GK (eds) Application of Soil Physics in Environmental Analysis: measuring, modeling and data integration. Springer, New York, NY, pp 75–90

    Google Scholar 

  • Wagner B, Tarnawski VR, Hennings V, Müller U, Wessolek G, Plagge R (2001) Evaluation of pedotransfer functions for unsaturated soil hydraulic conductivity using an independent data set. Geoderma 102:275–297

    Article  Google Scholar 

  • Warner B, Misra M (1996) Understanding neural networks as statistical tools. Am Statist 50:284–293

    Google Scholar 

  • Webster R (2001) Statistics to support soil research and their presentation. Eur J Soil Sci 52:331–340

    Article  CAS  Google Scholar 

  • Webster R, Oliver MA (2007) Geostatistics for environmental scientists, 2nd edn. John Wiley & Sons, Chichester

    Book  Google Scholar 

  • Wendroth O, Reynolds WD, Vieira SR, Reichardt K, Wirth S (1997) Statistical approaches to the analysis of soil quality data. In: Gregorich EG, Carter MR (eds) Soil quality for crop production and ecosystem health. Elsevier Science, Amsterdam, pp 247–276

    Chapter  Google Scholar 

  • West M, Harrison J (1997) Bayesian forecasting and dynamic models, 2nd edn. Springer, London

    Google Scholar 

  • Wilding LP, Drees LR (1983) Spatial variability and pedology. In: Wilding LP, Smeck NE, Hall GF (eds) Pedogenesis and soil taxonomy: concepts and interactions. Elsevier, New York, NY, pp 83–116

    Chapter  Google Scholar 

  • Wösten JHM (1997) Pedotransfer functions to evaluate soil quality. In: Gregorich EG, Carter MR (eds) Soil quality for crop production and ecosystem health. Elsevier Science, Amsterdam, pp 221–245

    Chapter  Google Scholar 

  • Wösten JHM, Pachepsky YA, Rawls WJ (2001) Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J Hydrol 251:123–150

    Article  Google Scholar 

  • Zimmerman D (1993) Another look at anisotropy in geostatistics. Math Geol 25:453–470

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reichardt, K., Timm, L.C. (2020). How Soil, Plant, and Atmosphere Properties Vary in Space and Time in the SPAS: An Approach to Geostatistics. In: Soil, Plant and Atmosphere. Springer, Cham. https://doi.org/10.1007/978-3-030-19322-5_17

Download citation

Publish with us

Policies and ethics