Skip to main content

Phylogenetic Trees: Applications, Construction, and Assessment

  • Chapter
  • First Online:
Essentials of Bioinformatics, Volume III

Abstract

Molecular phylogeny is used to study the relationships among the set of objects by generating phylogenetic or evolutionary tree. The objects in the study can be organisms or biomolecules such as gene or protein. The evolutionary history hidden in the biomolecules establishes the evolutionary patterns in the form of a tree when a suitable data, data substitution models, and tree construction methods are used. These evolutionary patterns are used to study the relationships among the objects. These patterns sometimes make it difficult to infer the relationship among the objects. In addition, different tree construction methods like unweighted pair group method with arithmetic mean (UPGMA), neighbor joining, minimum evolution, Fitch-Margoliash, maximum parsimony, maximum likelihood, Monte Carlo’s simulation, Bayes, and so on and types of data used in the analysis make it much more complicated to infer the relationships. The above tree construction methods follow different principles to construct a phylogenetic tree. Most often, the tree topologies generated by different methods for the same data will be the same, whereas in some cases the tree topologies may be different in their internal branching. These differences in the tree topologies may make it difficult to assess the confidence of the phylogenetic tree. Further, combination of the tree construction methods and data used by phylogeny program packages such as MEGA, Molphy, Phylip, PAML, and PAUP also make it difficult to assess the confidence of the phylogenetic tree. Molecular phylogeny has a wide range of applications such as affiliating taxonomy of an organism, studying reproductive biology in lower organisms, assessing the process of cryptic speciation in a species, understanding the history of life, resolving controversial history of life, reconstructing the paths of infection in an epidemiology, classifying proteins or genes into families, and many more. If the interpretation of the evolutionary patterns is not appropriate, then the inference of the study may be misleading. Thus, interpretation of the tree and relationships among the organisms is always dependent on assessing the confidence of the phylogenetic tree. Literature review shows that sampling methods such as bootstrapping, jackknifing, and Bayesian simulation and statistical methods such as Kishino-Hasegawa test and Shimodaira-Hasegawa test are used to assess the confidence of the phylogenetic tree. Thus, this chapter reviews the applications, construction, and assessment of phylogenetic tree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi J, Hasegawa M (1996) Molphy, version 2.3. Programs for molecular phylogenetics based on maximum likelihood. In: Ishiguro M, Kitagawa G, Ogata Y, Takagi H, Tamura Y, Tsuchiya T (eds) Computer science monographs. Institute of Statistical Mathematics, Tokyo

    Google Scholar 

  • Ané C, Larget B, Baum DA, Smith SD, Rokas A (2007) Bayesian estimation of concordance among gene trees. Mol Biol Evol 24(2):412–426

    Article  CAS  PubMed  Google Scholar 

  • Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290(5493):972–977

    Article  CAS  PubMed  Google Scholar 

  • Castro-Nallar E, Perez-Losada M, Burton GF, Crandall KA (2012) The evolution of HIV: inferences using phylogenetics. Mol Phylogenet Evol 62:777–792

    Article  CAS  PubMed  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21:550–570

    Article  CAS  PubMed  Google Scholar 

  • Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    Article  CAS  PubMed  Google Scholar 

  • Devi KU, Reineke A, Reddy NNR, Rao CUM, Padmavathi J (2006) Genetic diversity, reproductive biology, and speciation in the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin. Genome 49(5):495–504

    Article  CAS  PubMed  Google Scholar 

  • Devi UK, Reineke A, Rao UCM, Reddy NRN, Khan APA (2007) AFLP and single-strand conformation polymorphism studies of recombination in the entomopathogenic fungus Nomuraea rileyi. Mycol Res 111(6):716–725

    Article  CAS  PubMed  Google Scholar 

  • Drummond A, Strimmer K (2001) PAL: an object-oriented programming library for molecular evolution and phylogenetics. Bioinformatics 17:662–663

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1973) Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst Zool 22:240–249

    Article  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from gene-frequencies and quantitative characters – finding maximum-likelihood estimates. Evolution 35:1229–1242

    Article  PubMed  Google Scholar 

  • Felsenstein J (1989) PHYLIP – phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Fitch WM (1971) Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Frech C, Chen N (2010) Genome-wide comparative gene family classification. PLoS One 5(10):e13409. https://doi.org/10.1371/journal.pone.0013409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao F, Yue L, White AT, Pappas PG, Barchue J, Hanson AP, Greene BM, Sharp PM, Shaw GM, Hahn BH (1992) Human infection by genetically diverse SIVSM-related HIV-2 in West Africa. Nature 358:495–499

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Bailes E, Robertson DL, Chen Y, Rodenburg CM, Michael SF, Cummins LB, Arthur LO, Peeters M, Shaw GM, Sharp PM, Hahn BH (1999) Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes. Nature 397:436–441

    Article  CAS  PubMed  Google Scholar 

  • Gilbert MTP, Rambaut A, Wlasiuk G, Spira TJ, Pitchenik AE, Worobey M (2007) The emergence of HIV/AIDS in the Americas and beyond. Proc Natl Acad Sci U S A 104:18566–18570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goloboff PA (1999) Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15:415–428

    Article  PubMed  Google Scholar 

  • Grenfell B, Pybus O, Gog J, Wood J, Daly J (2004) Unifying the epidemiological and evolutionary dynamics of pathogens. Science 303:327–332

    Article  CAS  PubMed  Google Scholar 

  • Hahn BH, Shaw GM, De Cock KM, Sharp PM (2000) AIDS as a zoonosis: scientific and public health implications. Science 287:607–614

    Article  CAS  PubMed  Google Scholar 

  • Hardison RC (2012) Evolution of hemoglobin and its genes. Cold Spring Harb Perspect Med 2(12):a011627. https://doi.org/10.1101/cshperspect.a011627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22(2):160–174

    Article  CAS  PubMed  Google Scholar 

  • Holmes EC (2009) The evolution and emergence of RNA viruses. Oxford University Press, New York

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Huet T, Cheynier R, Meyerhans A, Roelants G, Wain-Hobson S (1990) Genetic organization of a chimpanzee lentivirus related to HIV-1. Nature 345:356–359

    Article  CAS  PubMed  Google Scholar 

  • Kishino H, Hasegawa M (1989) Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol 29:170–179

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: an integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Lemey P, Pybus OG, Wang B, Saksena NK, Salemi M, Vandamme A-M (2003) Tracing the origin and history of the HIV-2 epidemic. Proc Natl Acad Sci U S A 100:6588–6592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lord E, Leclercq M, Boc A, Diallo AB, Makarenkov V (2012) Armadillo 1.1: an original workflow platform for designing and conducting phylogenetic analysis and simulations. PLoS One 7(1):e29903. https://doi.org/10.1371/journal.pone.002990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maddison WP, Maddison DR (1992) MacClade. Sinauer Associates, Sunderland

    Google Scholar 

  • Maddison WP, Maddison DR (2011) Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org

  • Maeshima M (2000) Vacuolar H+-pyrophosphatase. Biochim Biophys Acta 1465:37–51

    Article  CAS  PubMed  Google Scholar 

  • Margos G, Vollmer SA, Ogden NH, Fish D (2011) Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infect Genet Evol 11(7):1545–1563

    Article  PubMed  PubMed Central  Google Scholar 

  • McGuire G, Wright F (2000) TOPAL 2.0: improved detection of mosaic sequences within multiple alignments. Bioinformatics 16(2):130–134

    Article  CAS  PubMed  Google Scholar 

  • Neelapu NRR (2007) Investigation on existence and mechanism of recombination and molecular phylogeny of mitosporic entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin and Nomuraea rileyi (Farlow) Samson. Doctoral dissertation, Andhra University, Visakhapatnam, India

    Google Scholar 

  • Neelapu NRR, Reineke A, Chanchala UMR, Koduru UD (2009) Molecular phylogeny of asexual entomopathogenic fungi with special reference to Beauveria bassiana and Nomuraea rileyi. Rev Iberoam Micol 26(2):129–145

    Article  PubMed  Google Scholar 

  • Nei M (1975) Molecular population genetics and evolution. North-Holland, Amsterdam

    Google Scholar 

  • Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274

    Article  CAS  PubMed  Google Scholar 

  • Olsen GJ, Matsuda H, Hagstrom R, Overbeek R (1994) FastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Bioinformatics 10(1):41–48

    Article  CAS  Google Scholar 

  • Opazo JC, Homan FG, Storz JF (2008) Genomic evidence for independent origins of like globin genes in monotremes and therian mammals. Proc Natl Acad Sci U S A 105:1590–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740

    Article  CAS  PubMed  Google Scholar 

  • Padmavathi J, Uma Devi K, Rao CUM, Reddy NNR (2003) Telomere fingerprinting for assessing chromosome number, isolating typing and recombination in the entomopathogen Beauveria bassiana. Mycol Res 107(5):572–580

    Article  CAS  PubMed  Google Scholar 

  • Page RDM (1998) GeneTree: comparing gene and species phylogenies using reconciled trees. Bioinformatics 14:819–820

    Article  CAS  PubMed  Google Scholar 

  • Pagel M, Meade A (2004) A phylogenetic mixture model for detecting pattern-heterogeneity in gene sequence or character-state data. Syst Biol 53:571–581

    Article  PubMed  Google Scholar 

  • Pérez-Losada M, Jobes DV, Sinangil F, Crandall KA, Posada D, Berman PW (2010) Phylodynamics of HIV-1 from a phase-III AIDS vaccine trial in North America. Mol Biol Evol 27:417–425

    Article  CAS  PubMed  Google Scholar 

  • Plantier J-C, Leoz M, Dickerson JE, De Oliveira F, Cordonnier F, Lemee V, Damond F, Robertson DL, Simon F (2009) A new human immunodeficiency virus derived from gorillas. Nat Med 15:871–872

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA, Templeton AR (2000) GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol Ecol 9:487–488

    Article  CAS  PubMed  Google Scholar 

  • Pozio E, Hoberg E, La Rosa G, Zarlenga DS (2009) Molecular taxonomy, phylogeny and biogeography of nematodes belonging to the Trichinella genus. Infect Genet Evol 9(4):606–616

    Article  CAS  PubMed  Google Scholar 

  • Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum-evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez-Flandes S, Ulloa O (2008) Bosque: integrated phylogenetic analysis software. Bioinformatics 24(21):2539–2541

    Article  CAS  PubMed  Google Scholar 

  • Raphaël H, Milinkovitch MC (2010) MetaPIGA v2.0: maximum likelihood large phylogeny estimation using the metapopulation genetic algorithm and other stochastic heuristics. BMC Bioinforma 11:379

    Article  Google Scholar 

  • Rea PA, Kim Y, Sarafian V, Poole RJ, Davies JM, Sanders D (1992) Vacuolar H+-translocating pyrophosphatase: a new category of ion translocase. Trends Biochem Sci 17(9):348–352

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Salemi M, Lamers SL, Yu S, de Oliveira T, Fitch WM, McGrath MS (2005) Phylodynamic analysis of human immunodeficiency virus type 1 in distinct brain compartments provides a model for the neuropathogenesis of AIDS. J Virol 79:11343–11352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18:502–504

    Article  CAS  PubMed  Google Scholar 

  • Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116

    Article  CAS  Google Scholar 

  • Sokal RR, Michener CD (1958) A statistical method for evaluating systematic relationships. J Univ Kans Sci Bull 28:1409–1438

    Google Scholar 

  • Suchard MA, Redelings BD (2006) BAli-Phy: simultaneous Bayesian inference of alignment and phylogeny. Bioinformatics 22:2047–2048

    Article  CAS  PubMed  Google Scholar 

  • Suneetha G, Neelapu NRR, Surekha C (2016) Plant vacuolar proton pyrophosphatases (VPPases): structure, function and mode of action. Int J Recent Sci Res 7(6):12148–12152

    Google Scholar 

  • Swofford DL (1991) PAUP: Phylogenetic Analysis Using Parsimony, version 3.1 Computer program distributed by the Illinois Natural History Survey, Champaign, Illinois

    Google Scholar 

  • Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular systematics. Sinauer, Sunderland

    Google Scholar 

  • Takahashi K, Nei M (2000) Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol Biol Evol 17:1251–1258

    Article  CAS  PubMed  Google Scholar 

  • Teugels G (1996) Taxonomy, phylogeny and biogeography of catfishes (Ostariophysi, Siluroidei): an overview. Aquat Living Resour 9(S1):9–34. https://doi.org/10.1051/alr:1996039

    Article  Google Scholar 

  • Thompson RCA (2008) The taxonomy, phylogeny and transmission of Echinococcus. Exp Parasitol 119(4):439–446

    Article  CAS  PubMed  Google Scholar 

  • Van Heuverswyn F, Peeters M (2007) The origins of HIV and implications for the global epidemic. Curr Infect Dis Rep 9:338–346

    Article  PubMed  Google Scholar 

  • Vinh LS, von Haeseler A (2004) IQPNNI: moving fast through tree space and stopping in time. Mol Biol Evol 21(8):1565–1571

    Article  CAS  Google Scholar 

  • Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Fox GE (1997) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74:5088–5090

    Article  Google Scholar 

  • Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worobey M, Gemmel M, Teuwen DE, Haselkorn T, Kunstman K, Bunce M, Muyembe J-J, Kabongo J-MM, Kalengayi RM, Van Marck E, Gilbert MTP, Wolinsky SM (2008) Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960. Nature 455:661–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia X, Xie Z (2001) DAMBE: data analysis in molecular biology and evolution. J Hered 92:371–373

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (2000) Phylogenetic analysis by maximum likelihood (PAML). University College, London

    Google Scholar 

Download references

Acknowledgment

The authors are grateful to Gandhi Institute of Technology and Management (GITAM) Deemed-to-be-University, for providing necessary facilities to carry out the research work and for extending constant support in writing this review.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Challa, S., Neelapu, N.R.R. (2019). Phylogenetic Trees: Applications, Construction, and Assessment. In: Hakeem, K., Shaik, N., Banaganapalli, B., Elango, R. (eds) Essentials of Bioinformatics, Volume III. Springer, Cham. https://doi.org/10.1007/978-3-030-19318-8_10

Download citation

Publish with us

Policies and ethics