Skip to main content

The Role of Structure and Complexity on Reservoir Computing Quality

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11493))

Abstract

We explore the effect of structure and connection complexity on the dynamical behaviour of Reservoir Computers (RC). At present, considerable effort is taken to design and hand-craft physical reservoir computers. Both structure and physical complexity are often pivotal to task performance, however, assessing their overall importance is challenging. Using a recently proposed framework, we evaluate and compare the dynamical freedom (referring to quality) of neural network structures, as an analogy for physical systems. The results quantify how structure affects the range of behaviours exhibited by these networks. It highlights that high quality reached by more complex structures is often also achievable in simpler structures with greater network size. Alternatively, quality is often improved in smaller networks by adding greater connection complexity. This work demonstrates the benefits of using abstract behaviour representation, rather than evaluation through benchmark tasks, to assess the quality of computing substrates, as the latter typically has biases, and often provides little insight into the complete computing quality of physical systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bala, A., Ismail, I., Ibrahim, R., Sait, S.M.: Applications of metaheuristics in reservoir computing techniques: a review. IEEE Access 6, 58012–58029 (2018)

    Article  Google Scholar 

  2. Adamatzky, A.: Game of Life Cellular Automata, vol. 1. Springer, London (2010). https://doi.org/10.1007/978-1-84996-217-9

    Book  MATH  Google Scholar 

  3. Appeltant, L., et al.: Information processing using a single dynamical node as complex system. Nature Commun. 2, 468 (2011)

    Article  Google Scholar 

  4. Büsing, L., Schrauwen, B., Legenstein, R.: Connectivity, dynamics, and memory in reservoir computing with binary and analog neurons. Neural Comput. 22(5), 1272–1311 (2010)

    Article  MathSciNet  Google Scholar 

  5. Crutchfield, J.P.: The calculi of emergence. Physica D 75(1–3), 11–54 (1994)

    Article  Google Scholar 

  6. Dale, M.: Neuroevolution of hierarchical reservoir computers. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 410–417. ACM (2018)

    Google Scholar 

  7. Dale, M., Miller, J.F., Stepney, S., Trefzer, M.A.: Evolving carbon nanotube reservoir computers. In: Amos, M., Condon, A. (eds.) UCNC 2016. LNCS, vol. 9726, pp. 49–61. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41312-9_5

    Chapter  Google Scholar 

  8. Dale, M., Miller, J.F., Stepney, S., Trefzer, M.A.: Reservoir computing in materio: an evaluation of configuration through evolution. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8, December 2016

    Google Scholar 

  9. Dale, M., Miller, J.F., Stepney, S., Trefzer, M.A.: Reservoir computing in materio: a computational framework for in materio computing. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2178–2185, May 2017

    Google Scholar 

  10. Dale, M., Miller, J.F., Stepney, S., Trefzer, M.A.: A substrate-independent framework to characterise reservoir computers. arXiv preprint arXiv:1810.07135 (2018)

  11. Gallicchio, C., Micheli, A., Pedrelli, L.: Deep reservoir computing: a critical experimental analysis. Neurocomputing 268, 87–99 (2017)

    Article  Google Scholar 

  12. Goudarzi, A., Lakin, M.R., Stefanovic, D.: DNA reservoir computing: a novel molecular computing approach. In: Soloveichik, D., Yurke, B. (eds.) DNA 2013. LNCS, vol. 8141, pp. 76–89. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-01928-4_6

    Chapter  MATH  Google Scholar 

  13. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. German National Research Center for Information Technology GMD Technical Report 148:34, Bonn, Germany (2001)

    Google Scholar 

  14. Jaeger, H.: Short term memory in echo state networks. GMD-Forschungszentrum Informationstechnik (2001)

    Google Scholar 

  15. Lavis, D.A.: Equilibrium statistical mechanics of lattice models. Springer, Dordrecht (2015). https://doi.org/10.1007/978-94-017-9430-5

    Book  MATH  Google Scholar 

  16. Legenstein, R., Maass, W.: Edge of chaos and prediction of computational performance for neural circuit models. Neural Networks 20(3), 323–334 (2007)

    Article  Google Scholar 

  17. Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through the search for novelty. In: ALIFE, pp. 329–336 (2008)

    Google Scholar 

  18. Lloyd, S.: Ultimate physical limits to computation. Nature 406(6799), 1047 (2000)

    Article  Google Scholar 

  19. Lukoševičius, M.: A practical guide to applying echo state networks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 659–686. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_36

    Chapter  Google Scholar 

  20. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3(3), 127–149 (2009)

    Article  Google Scholar 

  21. Paquot, Y., et al.: Optoelectronic reservoir computing. Scientific Reports, 2 (2012)

    Google Scholar 

  22. Pearson, J.E.: Complex patterns in a simple system. Science 261(5118), 189–192 (1993)

    Article  Google Scholar 

  23. Rodan, A., Tiňo, P.: Simple deterministically constructed recurrent neural networks. In: Fyfe, C., Tino, P., Charles, D., Garcia-Osorio, C., Yin, H. (eds.) IDEAL 2010. LNCS, vol. 6283, pp. 267–274. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15381-5_33

    Chapter  Google Scholar 

  24. Rodan, A., Tino, P.: Minimum complexity echo state network. IEEE Trans. Neural Networks 22(1), 131–144 (2011)

    Article  Google Scholar 

  25. Rodan, A., Tiňo, P.: Simple deterministically constructed cycle reservoirs with regular jumps. Neural Comput. 24(7), 1822–1852 (2012)

    Article  MathSciNet  Google Scholar 

  26. Schrauwen, B., Verstraeten, D., Van Campenhout, J.: An overview of reservoir computing: theory, applications and implementations. In: Proceedings of the 15th European Symposium on Artificial Neural Networks. Citeseer (2007)

    Google Scholar 

  27. Stepney, S.: The neglected pillar of material computation. Physica D 237(9), 1157–1164 (2008)

    Article  MathSciNet  Google Scholar 

  28. Tanaka, G., et al.: Recent advances in physical reservoir computing: a review. arXiv preprint arXiv:1808.04962 (2018)

  29. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: An experimental unification of reservoir computing methods. Neural Networks 20(3), 391–403 (2007)

    Article  Google Scholar 

  30. Xue, Y., Yang, L., Haykin, S.: Decoupled echo state networks with lateral inhibition. Neural Networks 20(3), 365–376 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work is part of the SpInspired project, funded by EPSRC grant EP/R032823/1. Jack Dewhirst is funded by an EPSRC DTP PhD studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Dale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dale, M., Dewhirst, J., O’Keefe, S., Sebald, A., Stepney, S., Trefzer, M.A. (2019). The Role of Structure and Complexity on Reservoir Computing Quality. In: McQuillan, I., Seki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2019. Lecture Notes in Computer Science(), vol 11493. Springer, Cham. https://doi.org/10.1007/978-3-030-19311-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19311-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19310-2

  • Online ISBN: 978-3-030-19311-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics