Skip to main content

Impossibility of Sufficiently Simple Chemical Reaction Network Implementations in DNA Strand Displacement

  • Conference paper
  • First Online:
Unconventional Computation and Natural Computation (UCNC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11493))

  • 1004 Accesses

Abstract

DNA strand displacement (DSD) has recently become a common technology for constructing molecular devices, with a number of useful systems experimentally demonstrated. To help with DSD system design, various researchers are developing formal definitions to model DNA strand displacement systems. With these models a DSD system can be defined, described by a Chemical Reaction Network, simulated, and otherwise analyzed. Meanwhile, the research community is trying to use DSD to do increasingly complex tasks, while also trying to make DSD systems simpler and more robust. I suggest that formal modeling of DSD systems can be used not only to analyze DSD systems, but to guide their design. For instance, one might prove that a DSD system that implements a certain function must use a certain mechanism. As an example, I show that a physically reversible DSD system with no pseudoknots, no effectively trimolecular reactions, and using 4-way but not 3-way branch migration, cannot be a systematic implementation of reactions of the form \(A \rightleftharpoons B\) that uses a constant number of toehold domains and does not crosstalk when multiple reactions of that type are combined. This result is a tight lower bound in the sense that, for most of those conditions, removing just that one condition makes the desired DSD system possible. I conjecture that a system with the same restrictions using both 3-way and 4-way branch migration still cannot systematically implement the reaction \(A + B \rightleftharpoons C\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badelt, S., Shin, S.W., Johnson, R.F., Dong, Q., Thachuk, C., Winfree, E.: A general-purpose CRN-to-DSD compiler with formal verification, optimization, and simulation capabilities. In: Brijder, R., Qian, L. (eds.) DNA 2017. LNCS, vol. 10467, pp. 232–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66799-7_15

    Chapter  MATH  Google Scholar 

  2. Cardelli, L.: Two-domain DNA strand displacement. Math. Struct. Comput. Sci. 23, 247–271 (2013)

    Article  MathSciNet  Google Scholar 

  3. Chen, S.X., Zhang, D.Y., Seelig, G.: Conditionally fluorescent molecular probes for detecting single base changes in double-stranded DNA. Nat. Chem. 5(9), 782 (2013)

    Article  Google Scholar 

  4. Chen, Y.J., et al.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8, 755–762 (2013)

    Article  Google Scholar 

  5. Dabby, N.L.: Synthetic molecular machines for active self-assembly: prototype algorithms, designs, and experimental study. Ph.D. thesis, California Institute of Technology, February 2013

    Google Scholar 

  6. Dirks, R.M., Bois, J.S., Schaeffer, J.M., Winfree, E., Pierce, N.A.: Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev. 49(1), 65–88 (2007)

    Article  MathSciNet  Google Scholar 

  7. Douglas, S.M., Bachelet, I., Church, G.M.: A logic-gated nanorobot for targeted transport of molecular payloads. Science 335(6070), 831–834 (2012)

    Article  Google Scholar 

  8. Groves, B., et al.: Computing in mammalian cells with nucleic acid strand exchange. Nat. Nanotechnol. 11(3), 287 (2016)

    Article  Google Scholar 

  9. Grun, C., Sarma, K., Wolfe, B., Shin, S.W., Winfree, E.: A domain-level DNA strand displacement reaction enumerator allowing arbitrary non-pseudoknotted secondary structures. CoRR p. http://arxiv.org/abs/1505.03738 (2015)

  10. Johnson, R.F., Dong, Q., Winfree, E.: Verifying chemical reaction network implementations: a bisimulation approach. Theoret. Comput. Sci. (2018). https://doi.org/10.1016/j.tcs.2018.01.002

    Article  MATH  Google Scholar 

  11. Johnson, R.F., Qian, L.: Simplifying chemical reaction network implementations with two-stranded DNA building blocks, in preparation

    Google Scholar 

  12. Lakin, M.R., Stefanovic, D., Phillips, A.: Modular verification of chemical reaction network encodings via serializability analysis. Theoret. Comput. Sci. 632, 21–42 (2016)

    Article  MathSciNet  Google Scholar 

  13. Lakin, M.R., Youssef, S., Polo, F., Emmott, S., Phillips, A.: Visual DSD: a design and analysis tool for DNA strand displacement systems. Bioinformatics 27, 3211–3213 (2011)

    Article  Google Scholar 

  14. Petersen, R.L., Lakin, M.R., Phillips, A.: A strand graph semantics for DNA-based computation. Theoret. Comput. Sci. 632, 43–73 (2016)

    Article  MathSciNet  Google Scholar 

  15. Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 2010. LNCS, vol. 6518, pp. 123–140. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18305-8_12

    Chapter  MATH  Google Scholar 

  16. Qian, L., Winfree, E.: Scaling up digital circuit computation with DNA strand displacement cascades. Science 332(6034), 1196–1201 (2011)

    Article  Google Scholar 

  17. Qian, L., Winfree, E.: Parallel and scalable computation and spatial dynamics with DNA-based chemical reaction networks on a surface. In: Murata, S., Kobayashi, S. (eds.) DNA 2014. LNCS, vol. 8727, pp. 114–131. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11295-4_8

    Chapter  MATH  Google Scholar 

  18. Shin, S.W., Thachuk, C., Winfree, E.: Verifying chemical reaction network implementations: a pathway decomposition approach. Theor. Comput. Sci. (2017) https://doi.org/10.1016/j.tcs.2017.10.011

    Article  MathSciNet  Google Scholar 

  19. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Nat. Acad. Sci. 107, 5393–5398 (2010)

    Article  Google Scholar 

  20. Srinivas, N., Parkin, J., Seelig, G., Winfree, E., Soloveichik, D.: Enzyme-free nucleic acid dynamical systems. Science 358 (2017). https://doi.org/10.1126/science.aal2052

    Article  Google Scholar 

  21. Thubagere, A.J., et al.: A cargo-sorting DNA robot. Science 357(6356), eaan6558 (2017)

    Article  Google Scholar 

  22. Thubagere, A.J., et al.: Compiler-aided systematic construction of large-scale DNA strand displacement circuits using unpurified components. Nat. Commun. 8, 14373 (2017)

    Article  Google Scholar 

  23. Venkataraman, S., Dirks, R.M., Rothemund, P.W., Winfree, E., Pierce, N.A.: An autonomous polymerization motor powered by DNA hybridization. Nat. Nanotechnol. 2(8), 490 (2007)

    Article  Google Scholar 

  24. Zhang, D.Y., Seelig, G.: Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3(2), 103–113 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

I thank Chris Thachuk, Stefan Badelt, Erik Winfree, and Lulu Qian for helpful discussions on formal verification and on two-stranded DSD systems. I also thank the anonymous reviewers of a rejected previous version of this paper for their suggestions, many of which appear in this version. I thank the NSF Graduate Research Fellowship Program for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert F. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Johnson, R.F. (2019). Impossibility of Sufficiently Simple Chemical Reaction Network Implementations in DNA Strand Displacement. In: McQuillan, I., Seki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2019. Lecture Notes in Computer Science(), vol 11493. Springer, Cham. https://doi.org/10.1007/978-3-030-19311-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19311-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19310-2

  • Online ISBN: 978-3-030-19311-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics