Skip to main content

Afterload

  • Chapter
  • First Online:
Cardiovascular Hemodynamics

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 2066 Accesses

Abstract

Cardiac afterload is a semiquantitative composite assessment of a determinant of cardiac output. Afterload is the force again which the heart pumps to expel blood into the vasculature and can be understood in the whole heart as the stress encountered by left ventricular myofibers as they contract against the end-diastolic volume. Wall tension can be at least in part described by LaPlace’s equation and aids in the explanation of why a dilated ventricle (with an increased chamber radius) must develop a greater inward force than a smaller heart to generate the same systolic pressure. The dilated ventricle is, therefore, vulnerable to an afterload mismatch whereby a high afterload can significantly decrease cardiac output. Addressing this mismatch with vasodilators is an established therapeutic strategy to augment cardiac output in the setting of both acute and chronic heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fuster V, Walsh R, Harrington R. Hurst’s the heart, vol. 1. 13th ed. New York: McGraw Hill; 2011.

    Google Scholar 

  2. MacGregor DC, Covell JW, Mahler F, Dilley RB, Ross JJ. Relations between afterload, stroke volume, and descending limb of Starling’s curve. Am J Physiol. 1974;227(4):884–90.

    Article  CAS  Google Scholar 

  3. Hales S. Statistical essays: containing haemastaticks, History of medicine series. Library of New York Academy of Medicine. New York: Hafner; 1733. Reproduced in 1964, no. 22.

    Google Scholar 

  4. Poiseuille JLM. Recherches experimentales sur le mouvement des liquids dans les tubes de tres petits diametres. Mem Savant Etrangers. 1846;9:433–544.

    Google Scholar 

  5. Nichols WW, Edwards DG. Arterial elastance and wave reflection augmentation of systolic blood pressure: deleterious effects and implications for therapy. J Cardiovasc Pharmacol Ther. 2001;6:5.

    Article  CAS  Google Scholar 

  6. Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, Vita JA, Vasan RS, Levy D. Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham heart study. Hypertension. 2004;43:1239–45.

    Article  CAS  Google Scholar 

  7. Hashimoto J, Ito S. Some mechanical aspects of arterial aging: physiological overview based on pulse wave analysis. Ther Adv Cardiovasc Dis. 2009;3:367.

    Article  Google Scholar 

  8. Chirinos JA, Kips JG, Jacobs DR Jr, Brumback L, Duprez DA, Kronmal R, Bluemke D, Townsend RR, Vermeersch S, Segers P. Arterial wave reflections and incident cardiovascular events and heart failure. J Am Coll Cardiol. 2012;60:2170–7.

    Article  Google Scholar 

  9. Ben-Shlomo Y, Spears M, Boustred C, May M, Anderson SG, Benjamin EJ, Boutouyrie P, Cameron J, Chen C-H, Cruickshank JK, Hwang S-J, Lakatta EG, Laurent S, Maldonado J, Mitchell GF, Najjar SS, Newman AB, Ohishi M, Pannier B, Pereira T, Vasan RS, Shokawa T, Sutton-Tyrell K, Verbeke F, Wang K-L, Webb DJ, Willum Hansen T, Zoungas S, McEniery CM, Cockcroft JR, Wilkinson IB. Aortic pulse wave velocity improves cardiovascular event prediction: an individual participant meta-analysis of prospective observational data from 17,635 subjects. J Am Coll Cardiol. 2014;63:636–46.

    Article  Google Scholar 

  10. O’Rourke MF, Hashimoto J. Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol. 2007;50:1–13.

    Article  Google Scholar 

  11. Little RC, Little WC. Cardiac preload, afterload, and heart failure. Arch Intern Med. 1982;142(4):819–22.

    Article  CAS  Google Scholar 

  12. Westerhof N, Stergiopulos N, Noble MIM. Snapshots of hemodynamics: an aid for clinical research and graduate education. 2nd ed. New York: Springer; 2010.

    Book  Google Scholar 

  13. Niederberger J, Schima H, Maurer G, Baumgartner H. Importance of pressure recovery for the assessment of aortic stenosis by Doppler ultrasound. Role of aortic size, aortic valve area, and direction of the stenotic jet in vitro. Circulation. 1996;94:1934–40.

    Article  CAS  Google Scholar 

  14. Covell JW, Pouleur H, Ross J Jr. Left ventricular wall stress and aortic input impedance. Fed Proc. 1980;39(2):202–7.

    CAS  PubMed  Google Scholar 

  15. Ross J Jr. Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis. 1976;18(4):255–64.

    Article  Google Scholar 

  16. Ross J Jr, Franklin D, Sasayama S. Preload, afterload, and the role of afterload mismatch in the descending limb of cardiac function. Eur J Cardiol. 1976;4(Suppl):77–86.

    PubMed  Google Scholar 

  17. Rockman HA, Ross RS, Harris AN, Knowlton KU, Steinhelper ME, Field LJ, Ross J Jr, Chien KR. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc Natl Acad Sci. 1991;88:8277–81.

    Article  CAS  Google Scholar 

  18. Fuster V, Walsh R. Hurst’s the heart, vol. 1. 13th ed. McGraw Hill: Harrington; 2011.

    Google Scholar 

  19. Iaizzo PA. Handbook of cardiac anatomy, physiology and devices. 2nd ed. New York: Springer; 2009. p. 271–96.

    Google Scholar 

  20. Rhode E, Ogawa S. Uber den einfluss der mechanischen bedingungen auf die totigkeit und den sauerstaffverback des warmbluterheizens. Arch Exp Path u Pharmakol. 1912;68:401–34.

    Article  Google Scholar 

  21. Sarnoff SJ, Braunwald E, Welch GH Jr, Case RB, Stainsby WN, Macruz R. Hemodynamic determinants of oxygen consumption of the heart with specific reference to the tension time index. Am J Phys. 1958;192:148–56.

    Article  CAS  Google Scholar 

  22. Kitamura K, Jorgensen CR, Gobel FL, Taylor HL, Wang Y. Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J Appl Physiol. 1972;32:516–22.

    Article  CAS  Google Scholar 

  23. Goldstein RE, Epstein SE. The use of indirect indices of myocardial oxygen consumption in evaluating angina pectoris. Chest. 1973;63(3):302–5.

    Article  CAS  Google Scholar 

  24. Daily EK, Schroeder JS. Techniques in bedside hemodynamic monitoring. 5th ed. St. Louis: Mosby; 1994.

    Google Scholar 

  25. Badesch DB, Champion HC, Sanchez MA, Hoeper MM, Loyd JE, Manes A, McGoon M, Naeije R, Olschewski H, Oudiz RJ, Torbicki A. Diagnosis and assessment of pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54:S55–66.

    Article  Google Scholar 

  26. Farber HW, Loscalzo J. Pulmonary arterial hypertension. N Engl J Med. 2004;351:1655–65.

    Article  CAS  Google Scholar 

  27. Hoeper MM, McLaughlin VV, Dalaan AM, Satoh T, Galie N. Treatment of pulmonary hypertension. Lancet Respir Med. 2016;4(4):323–36.

    Article  CAS  Google Scholar 

  28. Khot UN, Novaro GM, Popović ZB, Mills RM, Thomas JD, Tuzcu EM, Hammer D, Nissen SE, Francis GS. Nitroprusside in critically ill patients with left ventricular dysfunction and aortic stenosis. N Engl J Med. 2003;348:1756–63.

    Article  CAS  Google Scholar 

  29. Flaherty JT, Magee PA, Gardner TL, Potter A, MacAllister NP. Comparison of intravenous nitroglycerin and sodium nitroprusside for treatment of acute hypertension developing after coronary artery bypass surgery. Circulation. 1982;65:1072–7.

    Article  CAS  Google Scholar 

  30. Bos WJ, Zietse R, Wesseling KH, Westerhof N. Effects of arteriovenous fistulas on cardiac oxygen supply and demand. Kidney Int. 1999;55(5):2049–53.

    Article  CAS  Google Scholar 

  31. Sagawa K. Analysis of the ventricular pumping capacity as function of input and output pressure loads. In: Reeve EB, Guyton AC, editors. Physical bases of circulatory transport: regulation and exchange. Philadelphia: WB Saunders; 1967. p. 141–9.

    Google Scholar 

  32. Chirinos JA, Sweitzer N. Ventricular-Arterial coupling in chronic heart failure. Card Fail Rev. 2017;3:12–8.

    Article  Google Scholar 

  33. Norton JM. Toward consistent definitions for preload and afterload. Adv Physiol Educ. 2001;25(1–4):53–61.

    Article  CAS  Google Scholar 

  34. Loushin MK, Quill JL, Iaizzo PA. Mechanical aspects of cardiac performance. In: Iaizzo PA, editor. Handbook of cardiac anatomy, physiology, and devices. 2nd ed. New York: Springer; 2009. p. 271–96.

    Chapter  Google Scholar 

  35. Bashore TM. Clinical hemodynamics in valvular heart disease. In: Wang A, Bashore TM, editors. Valvular heart disease. New York: Humana-Springer; 2009. p. 93–122.

    Chapter  Google Scholar 

Suggested Reading

  • Fuster V, Walsh R, Harrington R. Hurst’s the heart, vol. 1. 1st ed. New York: McGraw Hill; 2011. (Part 2, Chapter 5 and Part 3, Chapter 14).

    Google Scholar 

  • Nichols WW, Edwards DG. Arterial elastance and wave reflection augmentation of systolic blood pressure: deleterious effects and implications for therapy. J Cardiovasc Pharmacol Ther. 2001;6:5.

    Article  CAS  Google Scholar 

  • Ross J Jr. Afterload mismatch and preload reserve: a conceptual framework for the analysis of ventricular function. Prog Cardiovasc Dis. 1976;18(4):255–64.

    Article  Google Scholar 

  • Weber T, Chirinos JA. Pulsatile arterial haemodynamics in heart failure. Eur Heart J. 2018;37:2129.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda R. Vest .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vest, A.R. (2019). Afterload. In: Askari, A., Messerli, A. (eds) Cardiovascular Hemodynamics. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-19131-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19131-3_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-19130-6

  • Online ISBN: 978-3-030-19131-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics