Skip to main content

CT and MRI Cardiovascular Hemodynamics

  • Chapter
  • First Online:
Cardiovascular Hemodynamics

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 1765 Accesses

Abstract

Noninvasive cardiac imaging has experienced dynamic improvements over the past several decades and, increasingly, is a cornerstone of contemporary cardiovascular care. Multiple, complementary technologies, including magnetic resonance imaging (MRI), computed tomography (CT), echocardiography, nuclear scintigraphy, fluoroscopy, and angiography, are now capable of directly or indirectly providing information on cardiac and great vessel anatomy, volumes and function, myocardial perfusion, valvular morphology and function, coronary artery blood flow, and presence or absence of myocardial fibrosis or scar. Further, several of these technologies now are capable of providing a noninvasive hemodynamic assessment, which has otherwise primarily in the past been the domain and strength of echocardiography and invasive catheterization. Both CT and MRI have been proven to be accurate and reproducible, with each now capable of providing noninvasive hemodynamic information which is capable of enhancing clinical decision-making and impacting patient care. However, the use of this information must be based on a thorough knowledge of the strengths and weaknesses of the various noninvasive methods of hemodynamic assessment. Understanding the applications and limitations of these modalities will permit their effective and efficient usage in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Finn JP, Nael K, Deshpande V, Ratib O, Laub G. Cardiac MR imaging: state of the technology. Radiology. 2006;241:338–54.

    Article  PubMed  Google Scholar 

  2. Hillenbrand HB, Lima JA, Bluemke DA, Beache GM, McVeigh ER. Assessment of myocardial systolic function by tagged magnetic resonance imaging. J Cardiovasc Magn Reson. 2000;2:57–66.

    Article  CAS  PubMed  Google Scholar 

  3. Bollache E, Redheuil A, Clément-Guinaudeau S, Defrance C, Perdrix L, Ladouceur M, Lefort M, De Cesare A, Herment A, Diebold B, Mousseaux E, Kachenoura N. Automated left ventricular diastolic function evaluation from phase – contrast magnetic resonance and comparison with Doppler echocardiography. J Cardiovasc Magn Reson. 2010;12:63.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Malaty AN, Shah DJ, Abdelkarim AR, Nagueh SF. Relation of replacement fibrosis to left ventricular diastolic function in patients with dilated cardiomyopathy. J Am Soc Echocardiogr. 2011;24:333–8.

    Article  PubMed  Google Scholar 

  5. Karaahmet T, Tigen K, Dundar C, et al. The effect of cardiac fibrosis on left ventricular remodeling, diastolic function, and N-terminal pro-B-type natriuretic peptide levels in patients with non-ischemic dilated cardiomyopathy. Echocardiography. 2010;27:954–60.

    Article  PubMed  Google Scholar 

  6. Codreanu I, Robson MD, Golding SJ, et al. Longitudinally and circumferentially directed movements of the left ventricle studied by cardiovascular magnetic resonance phase contrast velocity mapping. J Cardiovasc Magn Reson. 2010;12:48.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lipinski MJ, et al. Prognostic value of stress cardiac magnetic resonance imaging in patients with known or suspected coronary artery disease. J Am Coll Cardiol. 2013;62:826–38.

    Article  PubMed  Google Scholar 

  8. Liu A, et al. Gadolinium-free cardiac MR stress T1-mapping to distinguish epicardial from microvascular coronary artery disease. J Am Coll Cardiol. 2018;71:957–68.

    Article  PubMed  PubMed Central  Google Scholar 

  9. MacMillan RM, Rees MR, Eldredge WJ, Maranhao V, Clark DL. Quantitation of shunting at the atrial level using rapid acquisition computed tomography with comparison with cardiac catherization. J Am Coll Cardiol. 1986;7:946–8.

    Article  CAS  PubMed  Google Scholar 

  10. Rajiah P, Kanne JP. Computed tomography of septal defects. J Cardiovasc Comput Tomogr. 2010;4:231–45.

    Article  PubMed  Google Scholar 

  11. Garrett JS, Jaschke W, Botvinick EH, Higgins CB, Lipton MJ. Quantitation of intracardiac shunts by cine CT. J Comput Assist Tomogr. 1988;12:82–7.

    Article  CAS  PubMed  Google Scholar 

  12. Diethelm L, Dery R, Lipton MJ, Higgins CB. Atrial-level shunts: sensitivity and specificity of MR in diagnosis. Radiology. 1987;162:181–6.

    Article  CAS  PubMed  Google Scholar 

  13. Holmvang G, Palacios IF, Vlahakes GJ, et al. Imaging and sizing of atrial septal defects by magnetic resonance. Circulation. 1995;92:3473–80.

    Article  CAS  PubMed  Google Scholar 

  14. Hundley WG, Li HF, Lange RA, et al. Assessment of left-to-right intracardiac shunting by velocity-encoded, phase-difference magnetic resonance imaging: a comparison with oximetric and indicator dilution techniques. Circulation. 1995;91:2955–60.

    Article  CAS  PubMed  Google Scholar 

  15. Anderson RH, Lenox CC, Zuberbuhler JR. The morphology of ventricular septal defects. Perspect Pediatr Pathol. 1984;8:235–68.

    CAS  PubMed  Google Scholar 

  16. Williamson EE, Kirsch J, Araoz PA, Edmister WB, Borgeson DD, Glockner JF, Breen JF. ECG- gated cardiac CT angiography using 64-MDCT for detection of patent foramen ovale. AJR Am J Roentgenol. 2008;190:929–33.

    Article  PubMed  Google Scholar 

  17. Didier D, Higgins CB. Identification and localization of ventricular septal defect by gated magnetic resonance imaging. Am J Cardiol. 1986;57:1363–8.

    Article  CAS  PubMed  Google Scholar 

  18. Higgins CB. Radiography of congenital heart disease. In: Higgins CB, editor. Essentials of cardiac radiology and imaging. Philadelphia: Lippincott; 1992. p. 49–90.

    Google Scholar 

  19. Ferrari VA, Scott CH, Holland GA, Axel L, Sutton MS. Ultrafast three-dimensional contrast-enhanced magnetic resonance angiography and imaging in the diagnosis of partial anomalous pulmonary venous drainage. J Am Coll Cardiol. 2001;37:1120–8.

    Article  CAS  PubMed  Google Scholar 

  20. Rathi VK, Doyle M, Yamrozik J, Williams RB, Caruppannan K, Truman C, Vido D, Biederman RW. Routine evaluation of left ventricular diastolic function by cardiovascular magnetic resonance: a practical approach. J Cardiovasc Magn Reson. 2008;8:36.

    Article  Google Scholar 

  21. Rathi VK, Biederman RW. Expanding role of cardiovascular magnetic resonance in left and right ventricular diastolic function. Heart Fail Clin. 2009;5:421–35.

    Article  PubMed  Google Scholar 

  22. Boogers MJ, van Werkhoven JM, Schuijf JD, Delgado V, El-Naggar HM, Boersma E, Nucifora G, van der Geest RJ, Paelinck BP, Kroft LJ, Reiber JH, de Roos A, Bax JJ, Lamb HJ. Feasibility of diastolic function assessment with cardiac CT feasibility study in comparison with tissue Doppler imaging. JACC Cardiovasc Imaging. 2011;3:246–56.

    Article  Google Scholar 

  23. Nakahara T, Jinzaki M, Fukuda N, Takahashi Y, Ishihara T, Takada A, Suzuki K, Manita M, Imanari T, Kanesawa N, Kuribayashi N, Kuribayashi M. Estimation of the left ventricular diastolic function with cardiac MDCT: correlation of the slope of the time-enhancement-curve with the mitral annulus diastolic velocity. Eur J Radiol. 2011;81(2):234–8.. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  24. Bolen MA, Popovic ZB, Rajiah P, Gabriel RS, Zurick AO, Lieber ML, Flamm SD. Cardiac MR assessment of aortic regurgitation: holodiastolic flow reversal in the descending aorta helps stratify severity. Radiology. 2011;260(1):98–104.. [Epub ahead of print]

    Article  PubMed  Google Scholar 

  25. Cawley PJ, Hamilton-Craig C, Owens DS, Krieger EV, Strugnell WE, Mitsumori L, et al. Prospective comparison of valve regurgitation quantitation by cardiac magnetic resonance imaging and transthoracic echocardiography. Circ Cardiovasc Imaging. 2013;6(1):48–57.

    Article  PubMed  Google Scholar 

  26. Uretsky S, Gillam L, Lang R, Chaudhry FA, Argulian E, Supariwala A, et al. Discordance between echocardiography and MRI in the assessment of mitral regurgitation severity: a prospective multicenter trial. J Am Coll Cardiol. 2015;65(11):1078–88.

    Article  PubMed  Google Scholar 

  27. Delgado V, et al. Assessment of mitral valve anatomy and geometry with multislice computed tomography. J Am Coll Cardiol Img. 2009;2:556–65.

    Article  Google Scholar 

  28. Ambler G, Omar RZ, Royston P, Kinsman R, Keogh BE, Taylor KM. Generic, simple risk stratification model for heart valve surgery. Circulation. 2005;112:224–31.

    Article  PubMed  Google Scholar 

  29. Bonow RO, Carabello BA, Kanu C, de Leon AC Jr, Faxon DP, Freed MD, et al. American College of Cardiology/American Heart Association task force on practice guidelines. ACC/AHA guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation. 2006;114:e84–231.

    Article  PubMed  Google Scholar 

  30. Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, Tuzcu EM, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363:1597–607.

    Article  CAS  PubMed  Google Scholar 

  31. Kondo C, Caputo GR, Semelka R, Foster E, Shimakawa A, Higgins CB. Right and left ventricular stroke volume measurements with velocity encoded cine MR imaging: in vitro and in vivo validation. Am J Roentgenol. 1991;157:9–16.

    Article  CAS  Google Scholar 

  32. Hoeper MM, Tongers J, Leppert A, Baus S, Maier R, Lotz J. Evaluation of right ventricular performance with a right ventricular ejection fraction thermodilution catheter and magnetic resonance imaging in patients with pulmonary hypertension. Chest. 2001;120:502–7.

    Article  CAS  PubMed  Google Scholar 

  33. Kwon D, Desai M. Cardiac magnetic resonance in hypertrophic cardiomyopathy: current state of the art. Expert Rev Cardiovasc Ther. 2010;8:103–11.

    Article  PubMed  Google Scholar 

  34. Proctor RD, Shambrook JS, McParland P, Peebles CR, Brown IW, Harden SP. Imaging hypertrophic heart diseases with cardiovascular MR. Clin Radiol. 2011;66:176–86.

    Article  PubMed  Google Scholar 

  35. Cheong BY, Muthupillai R, Nemeth M, Lambert B, Dees D, Huber S, Castriotta R, Flamm SD. The utility of delayed-enhancement magnetic resonance imaging for identifying nonischemic myocardial fibrosis in asymptomatic patients with biopsy-proven systemic sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2009;26:39–46.

    CAS  PubMed  Google Scholar 

  36. Syed IS, Glockner JF, Feng D, Araoz PA, Martinez MW, Edwards WD, Gertz MA, Dispenzieri A, Oh JK, Bellavia D, Tajik AJ, Grogan M. Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. JACC Cardiovasc Imaging. 2010;3:155–64.

    Article  PubMed  Google Scholar 

  37. Austin BA, Tang WH, Rodriguez ER, Tan C, Flamm SD, Taylor DO, Starling RC, Desai MY. Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. JACC Cardiovasc Imaging. 2009;2:1369–77.

    Article  PubMed  Google Scholar 

  38. Desai MY, Lima JA, Bluemke DA. Cardiovascular magnetic resonance imaging: current applications and future directions. Methods Enzymol. 2004;386:122–48.

    Article  PubMed  Google Scholar 

  39. Cheong B, Huber S, Muthupillai R, Flamm SD. Evaluation of myocardial iron overload by T2∗ cardiovascular magnetic resonance imaging. Tex Heart Inst J. 2005;32:448–9.

    PubMed  PubMed Central  Google Scholar 

  40. Vural M, Ucar O, Selvi NA, Pasaoglu L, Gurbuz MO, Cicekcioglu H, Aydogdu S, Koparal S. Assessment of global left ventricular systolic function with multidetector CT and 2D echocardiography: a comparison between reconstructions of 1-mm and 2-mm slice thickness at multidetector CT. Diagn Interv Radiol. 2010;16:236–40.

    PubMed  Google Scholar 

  41. Ko SM, Kim YJ, Park JH, Choi NM. Assessment of left ventricular ejection fraction and regional wall motion with 64-slice multidetector CT: a comparison with two-dimensional transthoracic echocardiography. Br J Radiol. 2010;83:28–34.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lotz J, Meier C, Leppert A, Galanski M. Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics. 2002;22:651–71.

    Article  PubMed  Google Scholar 

  43. Campbell M. Natural history of coarctation of the aorta. Br Heart J. 1970;32:633–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Achenbach S. Computed tomography coronary angiography. J Am Coll Cardiol. 2006;48:1919–28.

    Article  PubMed  Google Scholar 

  45. Chow BJ, Kass M, Gagne O, Chen L, Yam Y, Dick A, Wells GA. Can differences in corrected coronary opacification measured with computed tomography predict resting coronary artery flow. J Am Coll Cardiol. 2011;57:1280–8.

    Article  PubMed  Google Scholar 

  46. Nakanishi R, Budoff M. Noninvasive FFR derived from coronary CT in the management of coronary artery disease: technology and clinical update. Vasc Health Risk Manag. 2016;12:269–78.

    PubMed  PubMed Central  Google Scholar 

  47. Coenen A, Lubbers MM, Kurata A, et al. Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm. Radiology. 2015;274:674–83.

    Article  PubMed  Google Scholar 

  48. Koo BK, Erglis A, Doh JH, et al. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter discover-flow (diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol. 2011;58:1989–97.

    Article  PubMed  Google Scholar 

  49. Min JK, Leipsic J, Pencina MJ, et al. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308:1237–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nørgaard BL, Leipsic J, Gaur S, NXT Trial Study Group, et al. Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (analysis of coronary blood flow using CT angiography: next steps). J Am Coll Cardiol. 2014;63:1145–55.

    Article  PubMed  Google Scholar 

  51. Renker M, Schoepf UJ, Wang R, et al. Comparison of diagnostic value of a novel noninvasive coronary computed tomography angiography method versus standard coronary angiography for assessing fractional flow reserve. Am J Cardiol. 2014;114:1303–8.

    Article  PubMed  Google Scholar 

  52. Baumann S, Wang R, Schoepf UJ, et al. Coronary CT angiography- derived fractional flow reserve correlated with invasive fractional flow reserve measurements – initial experience with a novel physician-driven algorithm. Eur Radiol. 2015;25:1201–7.

    Article  PubMed  Google Scholar 

  53. Pontone G, et al. Incremental diagnostic value of stress computed tomography myocardial perfusion with whole-heart coverage CT scanner in intermediate- to high-risk symptomatic patients suspected of coronary artery disease. J Am Coll Cardiol Img. 2019;12:338–49.

    PubMed  Google Scholar 

  54. Blankstein R, Jerosch-Herold M. Stress myocardial perfusion imaging by computed tomography: a dynamic road is ahead. JACC Cardiovasc Imaging. 2010;3:821–3.

    Article  PubMed  Google Scholar 

  55. Tamarappoo BK, Dey D, Nakazato R, Shmilovich H, Smith T, Cheng VY, Thomson LE, Hayes SW, Friedman JD, Germano G, Slomka PJ, Berman DS. Comparison of the extent and severity of myocardial perfusion defects by CT angiography and SPECT myocardial perfusion imaging. JACC Cardiovasc Imaging. 2010;3:1010–9.

    Article  PubMed  Google Scholar 

  56. Kim WY, Danias PG, Stuber M, Flamm SD, Plein S, Nagel E, et al. Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med. 2001;345:1863–9.

    Article  CAS  PubMed  Google Scholar 

  57. Chen Z, Duan Q, Xue X, Chen L, Ye W, Jin L, Sun B. Noninvasive detection of coronary artery stenoses with contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T. Cardiology. 2010;117:284–90.

    Article  PubMed  Google Scholar 

  58. Lockie T, Ishida M, Perera D, Chiribiri A, De Silva K, Kozerke S, Marber M, Nagel RR, Redwood S, Plein S. High-resolution magnetic resonance myocardial perfusion imaging at 3.0-tesla to detect hemodynamically significant coronary artery stenoses as determined by fractional flow reserve. J Am Coll Cardiol. 2011;57:70–5.

    Article  PubMed  Google Scholar 

  59. Weber OM, Martin AJ, Higgins CB. Whole-heart steady-state free precession coronary artery magnetic resonance angiography. Magn Reson Med. 2003;50:1223–8.

    Article  PubMed  Google Scholar 

  60. Mymin D, Sharma GP. Total and effective coronary blood flow in coronary and noncoronary heart disease. J Clin Invest. 1974;52:363–73.

    Article  Google Scholar 

  61. Steffens JC, Bourne MW, Sakuma H, O’Sullivan M, Higgins CB. Quantification of collateral blood flow in coarctation of the aorta by velocity encoded cine magnetic resonance imaging. Circulation. 1994;90:937–43.

    Article  CAS  PubMed  Google Scholar 

  62. Therrien J, Webb GD. Congenital heart disease in adults. In: Braunwald E, editor. Heart disease: a textbook of cardiovascular medicine. 6th ed. Philadelphia: Saunders; 2001. p. 1592–621.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew O. Zurick .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zurick, A.O. (2019). CT and MRI Cardiovascular Hemodynamics. In: Askari, A., Messerli, A. (eds) Cardiovascular Hemodynamics. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-19131-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19131-3_12

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-19130-6

  • Online ISBN: 978-3-030-19131-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics