Skip to main content

Building Efficient Institutions: A Two-Stage Differential Game

  • Chapter
  • First Online:
Games in Management Science

Abstract

We consider a two-stage dynamic game with a corrupt government and civil society as its players. We characterize open-loop Nash equilibria and an interior switching time from a regime with high government corruption which persists in the first stage (bad regime) to a free-corruption regime and greater institutional quality (good regime, second stage). We found that an increase of optimism (pessimism) in the society will lead the civil society to invest less (more) efforts to fight corruption whereas a corrupt government will invest more (less) efforts in repression policy. Overall, the numerical results show that the higher the efficiency of the civil monitoring effort, the efficiency of institutions and the lower the discount rate; the higher the inertia which will lead the economy to a much earlier switch to good regime with low corruption as the jump occurs early.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since 1995, the Non-Governmental Organization Transparency International (henceforth TI) provides an index of perception of corruption for a number of countries across the world.

  2. 2.

    See Tomiyama (1985), Makris (2001), Shaikh and Caines (2007), Seierstad and Stabrun (2010), and Long et al. (2017) for a study of multi-stage or hybrid optimal control problems.

  3. 3.

    In the optimal control context, such points are called Skiba points or DNSS points (see Skiba 1978; Sethi 1977; Dechert and Nishimura 1983).

References

  • Acemoglu, D., Johnson, S., & Robinson, J. (2005). Institutions as fundamental cause of long-run growth. In P. Aghion & S. N. Durlauf (Eds.), Handbook of economic growth (Vol. 1A, pp. 386–472). Amsterdam: Elsevier.

    Google Scholar 

  • Argandona, A. (1991). Values, Institutions and Ethics. Business School-University of Navarra, Working Paper, No. 215.

    Google Scholar 

  • Bidner, C., & François, P. (2010). Cultivating trust: Norms, institutions and the implications of scale. Economic Journal, 121(55), 1097–1129.

    Google Scholar 

  • Dawid, H., Keoula, M. Y., & Kort, P. M. (2017). Numerical analysis of Markov-perfect equilibria with multiple stable steady states: A duopoly application with innovative firms. Dynamic Games Applications, 7, 555–577.

    Article  Google Scholar 

  • De, P. (2010). Governance, Institutions and Regional Infrastructure in Asia. ADBI Working Paper Series, No. 183.

    Google Scholar 

  • Dechert, W. D., & Nishimura, K. (1983). A complete characterization of optimal growth paths in an aggregated model with a non-concave production function. Journal of Economic Theory, 31(2), 332–354.

    Article  Google Scholar 

  • Dowding, K., John, P., Mergoudis, T., & Van Vugt, M. (2000). Exit, voice and loyalty: Analytic and empirical developments. European Journal of Political Research, 37, 469–495.

    Google Scholar 

  • Hirschman, A. O. (1970). Exit, voice and loyalty: Responses to decline in firms, organizations and states. Cambridge: Harvard University Press.

    Google Scholar 

  • Lloyd, P., & Lee, C. (2018). A review of the recent literature on the institutional economics analysis of the long-run performance of Nations. Journal of Economic Surveys, 32(1), 1–22.

    Article  Google Scholar 

  • Long, N. V., Prieur, F., Puzon. K., & Tidball. M. (2017). Piecewise closed-loop Nash equilibria in differential games with regime switching strategies. Journal of Economic Dynamics and Control, 76, 264–286.

    Article  Google Scholar 

  • Makris, M. (2001). Necessary conditions for infinite-horizon discounted two-stage optimal control problems. Journal of Economic Dynamics and Control, 25(12), 1935–1950.

    Article  Google Scholar 

  • Ngendakuriyo, F. (2013). Institutional quality and growth. Journal of Public Economic Theory, 15(1), 157–184.

    Article  Google Scholar 

  • Ngendakuriyo, F., & Zaccour, G. (2013). Fighting corruption: To precommit or not? Economics Letters, 120, 149–154.

    Article  Google Scholar 

  • Ngendakuriyo, F., & Zaccour, G. (2017). Should civil society organizations cooperate or compete in fighting a corrupt government? Mathematical Social Sciences, 85, 30–36.

    Article  Google Scholar 

  • Seierstad, A., & Stabrun, S. D. (2010). Control problems with surfaces triggering jumps in the state variables. Optimal Control Applications and Methods, 31(2), 117–136.

    Article  Google Scholar 

  • Sethi, S. P. (1977). Optimal advertising policy with the contagion model. Journal of Optimization Theory and Applications, 29(4), 975–627.

    Google Scholar 

  • Shaikh, M. S., & Caines, P. E. (2007). On the hybrid optimal control problem: Theory and algorithms. IEEE Transactions on Automatic Control, 52(9), 1587–1603.

    Article  Google Scholar 

  • Skiba, A. K. (1978). Optimal growth with a convex-concave production function. Econometrica, 46, 527–539.

    Article  Google Scholar 

  • Tomiyama, K. (1985). Two-stage optimal control problems and optimality conditions. Journal of Economic Dynamics and Control, 9(3), 317–337.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Ngendakuriyo .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Proposition 1

Regime 1

The current value Hamiltonian associated with problems P C and P G in regime 1 is given by:

$$\displaystyle \begin{aligned} {H}^1_C(q(t),w(t),x^*(t), {\lambda}^1_C(t))&= {\lambda}^1_C(t)\left(\left(bw(t) -\beta x^*(t)\right)-a\right)\\&\quad + \left[\left(\alpha q(t)+\theta (1-w\left( t\right))\right) (1-\kappa x^*(t))-\frac{w^2(t)}{2}\right] \end{aligned} $$
$$\displaystyle \begin{aligned} {H}^1_G(q(t),w^*(t),x(t), {\lambda}^1_G(t))&= {\lambda}^1_G(t)\left(\left(bw^*(t) -\beta x(t)\right)-a\right)\\&\quad + \left[\left(\alpha q(t)+\theta (1-w^*(t)) \right) (\kappa x(t))-\frac{x^2(t)}{2}\right] \end{aligned} $$

The first order conditions (assuming interior solutions) for the open-loop Nash equilibrium are given by:

$$\displaystyle \begin{aligned} \left. \begin{aligned} &(H_C^1)_w = {b\lambda_C^1- \theta(1 -\kappa x^*) - w^*} = 0,\\ &(H_C^1)_q=\rho \lambda_C^1- \dot{\lambda}_C^1 =\alpha(1-\kappa x^*)\\ &(H_C^1)_{\lambda_C^1} = (H_G^1)_{\lambda_G^1}= \dot{q}^* = bw^*-\beta x^*-a\\ &(H_G^1)_x = {-x^* - \beta \lambda_G^1 + \kappa(\alpha q^* + \theta (1 - w^*))} = 0\\ &(H_G^1)_q=\rho \lambda_C^1- \dot{\lambda}_C^1 ={\alpha\kappa x^*} \end{aligned}\quad \right\} {} \end{aligned} $$
(8)

The open-loop equilibrium dynamics, in \((q,\lambda _C^1,\lambda _G^1)\) coordinates, are given by:

(9)

The steady-state value for the control policies and the state variable in regime 1 are

$$\displaystyle \begin{aligned} &x^{ss}_1=\frac{b(b \alpha-\theta \rho) -a\rho}{b\kappa(b \alpha-\theta \rho)+\beta \rho},\quad w^{ss}_1=\frac{(b \alpha-\theta \rho) (\beta+a\kappa)}{b\kappa(b \alpha-\theta \rho)+\beta \rho}, \text{ and}\\ & q^{ss}_1= \frac{ b {\kappa}^2 \rho {\theta}^2 - \alpha b \beta \kappa \theta+\alpha {\beta}^2 - b \rho \theta - \beta \kappa \rho \theta - \beta \kappa \rho {\theta}^2 - a {\kappa}^2 \rho {\theta}^2-a \rho }{\alpha \kappa \rho \left(\beta - b \kappa \theta\right)}\\ &\qquad \;\;+\frac{\left(\beta + a \kappa\right) \left(b^2 + 2 \kappa \theta b \beta - {\beta}^2\right)}{\kappa \left(\beta - b \kappa \theta \right) \left(b\kappa(b \alpha-\theta \rho)+\beta \rho\right)}. \end{aligned} $$

Regime 2

The current value Hamiltonian associated with problems P C and P G in regime 2 is given by:

$$\displaystyle \begin{aligned} {H}^2_C(q(t),w(t),x^*(t), {\lambda}^2_C(t))&= {\lambda}^2_C(t)\left(\left(bw(t) -\beta x^*(t)\right)+a\right)\\&\quad + \left[\left(\alpha q(t)+\theta (1-w\left( t\right))\right) (1-\kappa x^*(t))-\frac{w^2(t)}{2}\right] \end{aligned} $$
$$\displaystyle \begin{aligned} {H}^2_G(q(t),w^*(t),x(t), {\lambda}^2_G(t))&= {\lambda}^2_G(t)\left(\left(bw^*(t) -\beta x(t)\right)+a\right)\\&\quad + \left[\left(\alpha q(t)+\theta (1-w^*(t)) \right) (\kappa x(t))-\frac{x^2(t)}{2}\right] \end{aligned} $$

The first order conditions (assuming interior solutions) for the open-loop Nash equilibrium are given by:

$$\displaystyle \begin{aligned} \left. \begin{aligned} &(H_C^2)_w ={b\lambda_C^1- \theta(1 -\kappa x^*) - w^*} = 0,\\ &(H_C^2)_q=\rho \lambda_C^2- \dot{\lambda}_C^2 =\alpha(1-\kappa x^*)\\ &(H_C^2)_{\lambda_C^2} = (H_G^2)_{\lambda_G^2}= \dot{q}^* = bw^*-\beta x^*+a\\ &(H_G^2)_x = {-x^* - \beta \lambda_G^2 + \kappa(\alpha q^* + \theta (1 - w^*))} = 0\\ &(H_G^2)_q=\rho \lambda_C^2- \dot{\lambda}_C^2 ={\alpha \kappa x^*} \end{aligned} \quad \right\} {} \end{aligned} $$
(10)

The open-loop equilibrium dynamics, in \((q,\lambda _C^2,\lambda _G^2)\) coordinates, are given by:

(11)

The steady-state value for the control policies and state variable in regime 2 are

$$\displaystyle \begin{aligned} x^{ss}_2&=\frac{b(b \alpha-\theta \rho) +a\rho}{b\kappa(b \alpha-\theta \rho)+\beta \rho},\quad w^{ss}_2=\frac{(b \alpha-\theta \rho) (\beta-a\kappa)}{b\kappa(b \alpha-\theta \rho)+\beta \rho}, \text{ and}\\ q^{ss}_2&= \frac{ b {\kappa}^2 \rho {\theta}^2 - \alpha b \beta \kappa \theta+\alpha {\beta}^2 - b \rho \theta - \beta \kappa \rho \theta - \beta \kappa \rho {\theta}^2 + a {\kappa}^2 \rho {\theta}^2+a \rho }{\alpha \kappa \rho \left(\beta - b \kappa \theta\right)}\\ &\quad +\frac{\left(\beta - a \kappa\right) \left(b^2 + 2 \kappa \theta b \beta - {\beta}^2\right)}{\kappa \left(\beta - b \kappa \theta \right) \left(b\kappa(b \alpha-\theta \rho)+\beta \rho\right)}. \end{aligned} $$

\(\blacksquare \)

Proof of Proposition 2

Using the (8) and (10) in (5) and (6) we obtain the following equations:

$$\displaystyle \begin{aligned} &A_c{\lambda_C^j}^2(\tau)+B_c{\lambda_C^j}(\tau){\lambda_G^j}(\tau)+C_c{\lambda_G^j}^2(\tau)+(D_c+a){\lambda_C^j}(\tau)+ E_c{\lambda_G^j}(\tau)+F_c \\ &=A_c{\lambda_C^i}^2(\tau)+B_c{\lambda_C^i}(\tau){\lambda_G^i}(\tau)+C_c{\lambda_G^i}^2(\tau)+(D_c-a){\lambda_C^i}(\tau)+ E_c{\lambda_G^i}(\tau)+F_c, {} \end{aligned} $$
(12)
$$\displaystyle \begin{aligned} &A_g{\lambda_C^j}^2(\tau)+B_g{\lambda_C^j}(\tau){\lambda_G^j}(\tau)+C_g{\lambda_G^j}^2(\tau)+D_g{\lambda_C^j}(\tau)+ (E_g+a){\lambda_G^j}(\tau)+F_g \\ &=A_g{\lambda_C^i}^2(\tau)+B_g{\lambda_C^i}(\tau){\lambda_G^i}(\tau)+C_g{\lambda_G^i}^2(\tau)+D_g{\lambda_C^i}(\tau)+ (E_g-a){\lambda_G^i}(\tau)+F_g. {} \end{aligned} $$
(13)

where

\(A_c=\frac {(b(2\beta \kappa ^3\theta ^3 + 2\beta \kappa \theta + b))}{2(\kappa ^2t^2 + 1)^2}\), \(B_c=\frac {(\beta (\beta \kappa ^2\theta ^2 - b \kappa \theta + \beta ))}{(\kappa ^2\theta ^2 + 1)^2}\), \(C_c=\frac {(\beta ^2 \kappa ^2\theta ^2)}{2(\kappa ^2\theta ^2 + 1)^2}\),\(D_c=\frac {b(\theta +\alpha q_{th})}{\theta }-\frac {b(\theta ^2+\theta +\alpha q_{th})}{\theta (\kappa ^2\theta ^2+1)^2} -\frac {\beta \kappa (\theta ^2+\theta +\alpha q_{th})}{(\kappa ^2\theta ^2+1)}\), \(E_c=\frac {(\beta \kappa (\theta ^2 + \theta + \alpha q_{th}))}{(\kappa ^2\theta ^2 + 1)^2}\), \(F_c=\frac {(\theta ^2+\theta + \alpha q_{th})^2}{2\theta ^2(\kappa ^2\theta ^2+1)^2}-\frac {(\theta + \alpha q_{th})^2}{(2\theta ^2)}\),

\(A_g=\frac {(b^2 \kappa ^2\theta ^2)}{2(\kappa ^2\theta ^2 + 1)^2}\), \(B_g=\frac {(b(b\kappa ^2\theta ^2 + \beta \kappa \theta + b))}{(\kappa ^2\theta ^2 + 1)^2}\), \(C_g=-\frac {(\beta (2b\kappa ^3\theta ^3 + 2b\kappa \theta - \beta ))}{2(\kappa ^2t^2 + 1)^2}\), \(D_g=-\frac {(\beta \kappa ^2 \theta (\theta ^2 + \theta + \alpha q_{th}))}{(\kappa ^2\theta ^2 + 1)^2}\),\(E_g=\frac {b(\theta +\alpha q_{th})}{\theta }-\frac {b(\theta ^2+\theta +\alpha q_{th})}{\theta (\kappa ^2\theta ^2+1)} -\frac {\beta \kappa (\theta ^2+\theta +\alpha q_{th})}{(\kappa ^2\theta ^2+1)^2}\) and \(F_g=\frac {\kappa ^2(\theta ^2+\theta + \alpha q_{th})^2}{2(\kappa ^2\theta ^2+1)^2}\). From (12) and (13), the switching time τ as well as the jumps \(\lambda ^j_C(\tau )-\lambda ^i_C(\tau )\) and \(\lambda ^j_G(\tau )-\lambda ^i_G(\tau )\) can be calculated when the equilibrium state trajectory undergoes a transition from regime i to regime j. \(\blacksquare \)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ngendakuriyo, F., Reddy, P.V. (2020). Building Efficient Institutions: A Two-Stage Differential Game. In: Pineau, PO., Sigué, S., Taboubi, S. (eds) Games in Management Science. International Series in Operations Research & Management Science, vol 280. Springer, Cham. https://doi.org/10.1007/978-3-030-19107-8_17

Download citation

Publish with us

Policies and ethics