Skip to main content

Image Guidance in Minimally Invasive Spine Surgery

  • Chapter
  • First Online:

Abstract

Image guidance (IG) can serve as a very important adjunct to the surgeon during minimally invasive spine surgery (MISS). There is robust data showing that IG decreases the incidence of suboptimal screw placement and more recent data that IG may decrease the incidence of neurological complications and need for reoperations following thoracolumbar instrumentation while improving workflow. IG is invaluable in cases of severe deformity or other altered anatomy as well as for the intraoperative training of residents and fellows. Indications for its use continue to expand with a growing body of literature justifying its use in not only guiding thoracolumbar pedicle screw placement but also cervical and pelvic instrumentation as well as spinal tumor resection. IG offers the further benefit of minimizing occupational exposures to ionizing radiation for the surgeon and OR staff. Future studies will help to modify imaging protocols in IG to also minimize patients’ radiation exposure.

As the use of IG in spine surgery continues to expand, its value in improving surgical accuracy and clinical outcomes must be weighed against concerns over cost and radiation exposure. Our personal experience has shown the technology to be both efficient and cost-effective by reducing screw revision rates and reducing occupational radiation exposures. Further research will continue to clarify the answers to these questions and better delineate situations where IG may be particularly beneficial in spine surgery.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Suk SI, Kim WJ, Lee SM, Kim JH, Chung ER. Thoracic pedicle screw fixation in spinal deformities: are they really safe? Spine. 2001;26:2049–57.

    Article  CAS  PubMed  Google Scholar 

  2. Beck M, Mittlmeier T, Gierer P, Harms C, Gradl G. Benefit and accuracy of intraoperative 3D-imaging after pedicle screw placement: a prospective study in stabilizing thoracolumbar fractures. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2009;18:1469–77.

    Article  Google Scholar 

  3. Verma R, Krishan S, Haendlmayer K, Mohsen A. Functional outcome of computer-assisted spinal pedicle screw placement: a systematic review and meta-analysis of 23 studies including 5,992 pedicle screws. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2010;19:370–5.

    Article  Google Scholar 

  4. Tian N-F, Xu H-Z. Image-guided pedicle screw insertion accuracy: a meta-analysis. Int Orthop. 2009;33:895–903.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kosmopoulos V, Schizas C. Pedicle screw placement accuracy: a meta-analysis. Spine. 2007;32:E111–20.

    Article  PubMed  Google Scholar 

  6. Gelalis ID, Paschos NK, Pakos EE, Politis AN, Arnaoutoglou CM, Karageorgos AC, et al. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2012;21:247–55.

    Article  Google Scholar 

  7. Mason A, Paulsen R, Babuska JM, Rajpal S, Burneikiene S, Nelson EL, et al. The accuracy of pedicle screw placement using intraoperative image guidance systems. J Neurosurg Spine. 2014;20:196–203.

    Article  PubMed  Google Scholar 

  8. Modi HN, Suh S-W, Hong J-Y, Yang J-H. Accuracy of thoracic pedicle screw using ideal pedicle entry point in severe scoliosis. Clin Orthop. 2010;468:1830–7.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kim YJ, Lenke LG, Bridwell KH, Cho YS, Riew KD. Free hand pedicle screw placement in the thoracic spine: is it safe? Spine. 2004;29:333–42.. discussion 342

    Article  PubMed  Google Scholar 

  10. Parker SL, McGirt MJ, Farber SH, Amin AG, Rick A-M, Suk I, et al. Accuracy of free-hand pedicle screws in the thoracic and lumbar spine: analysis of 6816 consecutive screws. Neurosurgery. 2011;68:170–8; discussion 178.

    Article  PubMed  Google Scholar 

  11. Karapinar L, Erel N, Ozturk H, Altay T, Kaya A. Pedicle screw placement with a free hand technique in thoracolumbar spine: is it safe? J Spinal Disord Tech. 2008;21:63–7.

    Article  PubMed  Google Scholar 

  12. Lonstein JE, Denis F, Perra JH, Pinto MR, Smith MD, Winter RB. Complications associated with pedicle screws. J Bone Joint Surg Am. 1999;81:1519–28.

    Article  CAS  PubMed  Google Scholar 

  13. Laine T, Lund T, Ylikoski M, Lohikoski J, Schlenzka D. Accuracy of pedicle screw insertion with and without computer assistance: a randomised controlled clinical study in 100 consecutive patients. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2000;9:235–40.

    Article  CAS  Google Scholar 

  14. Rajasekaran S, Vidyadhara S, Ramesh P, Shetty AP. Randomized clinical study to compare the accuracy of navigated and non-navigated thoracic pedicle screws in deformity correction surgeries. Spine. 2007;32:E56–64.

    Article  CAS  PubMed  Google Scholar 

  15. Silbermann J, Riese F, Allam Y, Reichert T, Koeppert H, Gutberlet M. Computer tomography assessment of pedicle screw placement in lumbar and sacral spine: comparison between free-hand and O-arm based navigation techniques. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2011;20:875–81.

    Article  CAS  Google Scholar 

  16. Merloz P, Tonetti J, Pittet L, Coulomb M, Lavalleé S, Sautot P. Pedicle screw placement using image guided techniques. Clin Orthop. 1998;354:39–48.

    Article  Google Scholar 

  17. Yson SC, Sembrano JN, Sanders PC, Santos ERG, Ledonio CGT, Polly DW. Comparison of cranial facet joint violation rates between open and percutaneous pedicle screw placement using intraoperative 3-D CT (O-arm) computer navigation. Spine. 2013;38:E251–8.

    Article  PubMed  Google Scholar 

  18. Luo TD, Polly DW, Ledonio CG, Wetjen NM, Larson AN. Accuracy of pedicle screw placement in children 10 years or younger using navigation and intraoperative CT. Clin Spine Surg. 2016;29:E135–8.

    Article  PubMed  Google Scholar 

  19. Baghdadi YMK, Larson AN, McIntosh AL, Shaughnessy WJ, Dekutoski MB, Stans AA. Complications of pedicle screws in children 10 years or younger: a case control study. Spine. 2013;38:E386–93.

    Article  PubMed  Google Scholar 

  20. Neo M, Sakamoto T, Fujibayashi S, Nakamura T. The clinical risk of vertebral artery injury from cervical pedicle screws inserted in degenerative vertebrae. Spine. 2005;30:2800–5.

    Article  PubMed  Google Scholar 

  21. Yukawa Y, Kato F, Ito K, Horie Y, Hida T, Nakashima H, et al. Placement and complications of cervical pedicle screws in 144 cervical trauma patients using pedicle axis view techniques by fluoroscope. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc. 2009;18:1293–9.

    Article  Google Scholar 

  22. Shimokawa N, Takami T. Surgical safety of cervical pedicle screw placement with computer navigation system. Neurosurg Rev. 2017;40:251–8.

    Article  PubMed  Google Scholar 

  23. Ishikawa Y, Kanemura T, Yoshida G, Matsumoto A, Ito Z, Tauchi R, et al. Intraoperative, full-rotation, three-dimensional image (O-arm)-based navigation system for cervical pedicle screw insertion. J Neurosurg Spine. 2011;15:472–8.

    Article  PubMed  Google Scholar 

  24. Theologis AA, Burch S. Safety and efficacy of reconstruction of complex cervical spine pathology using pedicle screws inserted with stealth navigation and 3D image-guided (O-arm) technology. Spine. 2015;40:1397–406.

    Article  PubMed  Google Scholar 

  25. Kovanda TJ, Ansari SF, Qaiser R, Fulkerson DH. Feasibility of CT-based intraoperative 3D stereotactic image-guided navigation in the upper cervical spine of children 10 years of age or younger: initial experience. J Neurosurg Pediatr. 2015;16:1–9.

    Article  Google Scholar 

  26. Xiao R, Miller JA, Sabharwal NC, Lubelski D, Alentado VJ, Healy AT, et al. Clinical outcomes following spinal fusion using an intraoperative computed tomographic 3D imaging system. J Neurosurg Spine. 2017;26:628–37.

    Article  PubMed  Google Scholar 

  27. Watkins RG, Gupta A, Watkins RG. Cost-effectiveness of image-guided spine surgery. Open Orthop J. 2010;4:228–33.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Khanna AR, Yanamadala V, Coumans J-V. Effect of intraoperative navigation on operative time in 1-level lumbar fusion surgery. J Clin Neurosci Off J Neurosurg Soc Australas. 2016;32:72–6.

    Google Scholar 

  29. Park P. Three-dimensional computed tomography-based spinal navigation in minimally invasive lateral lumbar interbody fusion: feasibility, technique, and initial results. Neurosurgery. 2015;11(Suppl 2):259–67.

    PubMed  Google Scholar 

  30. Joseph JR, Smith BW, Patel RD, Park P. Use of 3D CT-based navigation in minimally invasive lateral lumbar interbody fusion. J Neurosurg Spine. 2016;25:339–44.

    Article  PubMed  Google Scholar 

  31. Drazin D, Liu JC, Acosta FL Jr. CT navigated lateral interbody fusion. J Clin Neurosci. 2013;20:1438–41.

    Article  PubMed  Google Scholar 

  32. Geisler F. Stabilization of the sacroiliac joint with the SI-bone surgical technique. Neurosurg Focus. 2013;35(2 Suppl):Video 8.

    Article  PubMed  Google Scholar 

  33. Lorio MP, Polly DW, Ninkovic I, Ledonio CGT, Hallas K, Andersson G. Utilization of minimally invasive surgical approach for sacroiliac joint fusion in surgeon population of ISASS and SMISS membership. Open Orthop J. 2014;8:1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee DJ, Kim S-B, Rosenthal P, Panchal RR, Kim KD. Stereotactic guidance for navigated percutaneous sacroiliac joint fusion. J Biomed Res. 2016;30:162–7.

    PubMed  Google Scholar 

  35. Nottmeier EW, Pirris SM, Balseiro S, Fenton D. Three-dimensional image-guided placement of S2 alar screws to adjunct or salvage lumbosacral fixation. Spine J Off J North Am Spine Soc. 2010;10:595–601.

    Article  Google Scholar 

  36. Ray WZ, Ravindra VM, Schmidt MH, Dailey AT. Stereotactic navigation with the O-arm for placement of S-2 alar iliac screws in pelvic lumbar fixation. J Neurosurg Spine. 2013;18:490–5.

    Article  PubMed  Google Scholar 

  37. Shin JH, Hoh DJ, Kalfas IH. Iliac screw fixation using computer-assisted computer tomographic image guidance: technical note. Neurosurgery. 2012;70:16–20; discussion 20.

    PubMed  Google Scholar 

  38. Nagashima H, Nishi T, Yamane K, Tanida A. Case report: osteoid osteoma of the C2 pedicle: surgical technique using a navigation system. Clin Orthop. 2010;468:283–8.

    Article  PubMed  Google Scholar 

  39. Mori K, Neo M, Takemoto M, Nishizawa K, Imai S. Navigated pin-point approach to osteoid osteoma adjacent to the facet joint of spine. Asian Spine J. 2016;10:158–63.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Van Royen BJ, Baayen JC, Pijpers R, Noske DP, Schakenraad D, Wuisman PIJM. Osteoid osteoma of the spine: a novel technique using combined computer-assisted and gamma probe-guided high-speed intralesional drill excision. Spine. 2005;30:369–73.

    Article  PubMed  Google Scholar 

  41. Moore T, McLain RF. Image-guided surgery in resection of benign cervicothoracic spinal tumors: a report of two cases. Spine J Off J North Am Spine Soc. 2005;5:109–14.

    Article  Google Scholar 

  42. Fujibayashi S, Neo M, Takemoto M, Ota M, Nakayama T, Toguchida J, et al. Computer-assisted spinal osteotomy: a technical note and report of four cases. Spine. 2010;35:E895–903.

    Article  PubMed  Google Scholar 

  43. Vougioukas VI, Hubbe U, Schipper J, Spetzger U. Navigated transoral approach to the cranial base and the craniocervical junction: technical note. Neurosurgery. 2003;52:247–50; discussion 251.

    PubMed  Google Scholar 

  44. Zong S, Wu Y, Tao Y, Chen X, Fang Y, Du L, et al. Treatment results in different surgical approaches for intraspinal tumor in 51 patients. Int J Clin Exp Med. 2015;8:16627–33.

    PubMed  PubMed Central  Google Scholar 

  45. Maduri R, Bobinski L, Duff JM. Image Merge Tailored Access Resection (IMTAR) of spinal Intradural tumors. Technical report of 13 cases. World Neurosurg. 2017;98:594–602.

    Article  PubMed  Google Scholar 

  46. Nasser R, Drazin D, Nakhla J, Al-Khouja L, Brien E, Baron EM, et al. Resection of spinal column tumors utilizing image-guided navigation: a multicenter analysis. Neurosurg Focus. 2016;41:E15.

    Article  PubMed  Google Scholar 

  47. Lian X, Navarro-Ramirez R, Berlin C, Jada A, Moriguchi Y, Zhang Q, et al. Total 3D Airo® navigation for minimally invasive transforaminal lumbar interbody fusion. Biomed Res Int. 2016;2016:1. https://doi.org/10.1155/2016/5027340.

    Article  Google Scholar 

  48. Nooh A, Lubov J, Aoude A, Aldebeyan S, Jarzem P, Ouellet J, et al. Differences between manufacturers of computed tomography–based computer-assisted surgery systems do exist. Glob Spine J. 2017;7:83–94.

    Article  Google Scholar 

  49. Wrixon AD. New ICRP recommendations. J Radiol Prot Off J Soc Radiol Prot. 2008;28:161–8.

    CAS  Google Scholar 

  50. Bindal RK, Glaze S, Ognoskie M, Tunner V, Malone R, Ghosh S. Surgeon and patient radiation exposure in minimally invasive transforaminal lumbar interbody fusion. J Neurosurg Spine. 2008;9:570–3.

    Article  PubMed  Google Scholar 

  51. Rampersaud YR, Foley KT, Shen AC, Williams S, Solomito M. Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine. 2000;25:2637–45.

    Article  CAS  PubMed  Google Scholar 

  52. Smith HE, Welsch MD, Sasso RC, Vaccaro AR. Comparison of radiation exposure in lumbar pedicle screw placement with fluoroscopy vs computer-assisted image guidance with intraoperative three-dimensional imaging. J Spinal Cord Med. 2008;31:532–7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Abul-Kasim K, Söderberg M, Selariu E, Gunnarsson M, Kherad M, Ohlin A. Optimization of radiation exposure and image quality of the cone-beam O-arm intraoperative imaging system in spinal surgery. J Spinal Disord Tech. 2012;25:52–8.

    Article  PubMed  Google Scholar 

  54. Izadpanah K, Konrad G, Südkamp NP, Oberst M. Computer navigation in balloon kyphoplasty reduces the intraoperative radiation exposure. Spine. 2009;34:1325–9.

    Article  PubMed  Google Scholar 

  55. Perisinakis K, Damilakis J, Theocharopoulos N, Papadokostakis G, Hadjipavlou A, Gourtsoyiannis N. Patient exposure and associated radiation risks from fluoroscopically guided vertebroplasty or kyphoplasty. Radiology. 2004;232:701–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. O’Toole .

Editor information

Editors and Affiliations

Appendices

Quiz Questions

True/False

  1. 1.

    While a number of studies have shown that image guidance increases thoracolumbar pedicle screw placement accuracy, there are currently no studies that have shown an improvement in clinical outcomes when compared to either freehand or two-dimensional fluoroscopic techniques.

  2. 2.

    Older image guidance systems used a patient’s preoperative CT scan which required intraoperative registration to specific anatomic landmarks in order to provide real-time navigation.

  3. 3.

    Intraoperative multi-slice helical CT scan provides better soft tissue resolution than cone-beam three-dimensional fluoroscopy.

  4. 4.

    Research has conclusively shown that image guidance systems reduce radiation exposure to both the surgeon and the patient in comparison to two-dimensional fluoroscopic techniques.

Answers

  1. 1.

    False

  2. 2.

    True

  3. 3.

    True

  4. 4.

    False

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kochanski, R.B., Alahmadi, H., O’Toole, J.E. (2019). Image Guidance in Minimally Invasive Spine Surgery. In: Phillips, F., Lieberman, I., Polly Jr., D., Wang, M. (eds) Minimally Invasive Spine Surgery. Springer, Cham. https://doi.org/10.1007/978-3-030-19007-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19007-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19006-4

  • Online ISBN: 978-3-030-19007-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics